MMA7361LCR2.pdf 데이터시트 (총 11 페이지) - 파일 다운로드 MMA7361LCR2 데이타시트 다운로드

No Preview Available !

Freescale Semiconductor
Data Sheet: Technical Data
Document Number: MMA7361LC
Rev 1, 08/2011
±1.5g, ±6g Three Axis Low-g
Micromachined Accelerometer
The MMA7361LC is a low power, low profile capacitive micromachined
accelerometer featuring signal conditioning, a 1-pole low pass filter,
temperature compensation, self test, 0g-Detect which detects linear freefall,
and g-Select which allows for the selection between two sensitivities. Zero-g
offset and sensitivity are factory set and require no external devices. The
MMA7361LC includes a Sleep Mode that makes it ideal for handheld battery
powered electronics.
Features
• 3mm x 5mm x 1.0mm LGA-14 Package
• Low Current Consumption: 400 μA
• Sleep Mode: 3 μA
• Low Voltage Operation: 2.2 V – 3.6 V
• High Sensitivity (800 mV/g @ 1.5g)
• Selectable Sensitivity (±1.5g, ±6g)
• Fast Turn On Time (0.5 ms Enable Response Time)
• Self Test for Freefall Detect Diagnosis
• 0g-Detect for Freefall Protection
• Signal Conditioning with Low Pass Filter
• Robust Design, High Shocks Survivability
• RoHS Compliant
• Environmentally Preferred Product
• Low Cost
Typical Applications
• 3D Gaming: Tilt and Motion Sensing, Event Recorder
• HDD MP3 Player: Freefall Detection
• Laptop PC: Freefall Detection, Anti-Theft
• Cell Phone: Image Stability, Text Scroll, Motion Dialing, eCompass
• Pedometer: Motion Sensing
• PDA: Text Scroll
• Navigation and Dead Reckoning: eCompass Tilt Compensation
• Robotics: Motion Sensing
Part Number
MMA7361LCT
MMA7361LCR1
MMA7361LCR2
ORDERING INFORMATION
Temperature
Range
Package
Drawing
Package
Shipping
–40 to +85°C
1977-01
LGA-14
Tray
–40 to +85°C
1977-01
LGA-14 7” Tape & Reel
–40 to +85°C
1977-01
LGA-14 13” Tape & Reel
MMA7361LC
MMA7361LC: XYZ AXIS
ACCELEROMETER
±1.5g, ±6g
Bottom View
14 LEAD
LGA
CASE 1977-01
Top View
N/C
N/C
XOUT
YOUT
ZOUT
VSS
VDD
Self Test
N/C
N/C
g-Select
0g-Detect
N/C
Sleep
Figure 1. Pin Connections
© Freescale Semiconductor, Inc., 2010, 2011. All rights reserved.

No Preview Available !

g-Select
Sleep
Self Test
VDD
G-CELL
SENSOR
OSCILLATOR
CLOCK
GEN
X-TEMP
COMP
C to V
CONVERTER
GAIN
+
FILTER
Y-TEMP
COMP
SELFTEST
CONTROL LOGIC
NVM TRIM
CIRCUITS
Z-TEMP
COMP
0g-Detect
XOUT
YOUT
ZOUT
VSS
Figure 2. Simplified Accelerometer Functional Block Diagram
Table 1. Maximum Ratings
(Maximum ratings are the limits to which the device can be exposed without causing permanent damage.)
Rating
Symbol
Value
Maximum Acceleration (all axis)
Supply Voltage
Drop Test(1)
Storage Temperature Range
1. Dropped onto concrete surface from any axis.
gmax
VDD
Ddrop
Tstg
±5000
–0.3 to +3.6
1.8
–40 to +125
Unit
g
V
m
°C
ELECTRO STATIC DISCHARGE (ESD)
WARNING: This device is sensitive to electrostatic
discharge.
Although the Freescale accelerometer contains internal
2000 V ESD protection circuitry, extra precaution must be
taken by the user to protect the chip from ESD. A charge of
over 2000 volts can accumulate on the human body or
associated test equipment. A charge of this magnitude can
alter the performance or cause failure of the chip. When
handling the accelerometer, proper ESD precautions should
be followed to avoid exposing the device to discharges which
may be detrimental to its performance.
MMA7361LC
2
Sensors
Freescale Semiconductor

No Preview Available !

Table 2. Operating Characteristics
Unless otherwise noted: -40°C < TA < 85°C, 2.2 V < VDD < 3.6 V, Acceleration = 0g, Loaded output(1)
Characteristic
Symbol Min Typ
Operating Range(2)
Supply Voltage(3)
Supply Current(4)
Supply Current at Sleep Mode(4)
Operating Temperature Range
Acceleration Range, X-Axis, Y-Axis, Z-Axis
g-Select: 0
g-Select: 1
Output Signal
Zero-g (TA = 25°C, VDD = 3.3 V)(5), (6)
XY
Z(7)
Zero-g(4)
Sensitivity (TA = 25°C, VDD = 3.3 V)
1.5g
6g
Sensitivity(4)
Bandwidth Response
XY
Z
Output Impedance
0g-Detect
Self Test
Output Response
XOUT, YOUT
ZOUT
Input Low
Input High
Noise
Power Spectral Density RMS (0.1 Hz – 1 kHz)(4)
Control Timing
Power-Up Response Time(8)
Enable Response Time(9)
Self Test Response Time(10)
Sensing Element Resonant Frequency
XY
Z
Internal Sampling Frequency
Output Stage Performance
Full-Scale Output Range (IOUT = 3 µA)
Nonlinearity, XOUT, YOUT, ZOUT
Cross-Axis Sensitivity(11)
VDD
IDD
IDD
TA
gFS
gFS
VOFF
VOFF, TA
S1.5g
S6g
S,TA
f-3dBXY
f-3dBZ
ZO
0gdetect
2.2 3.3
— 400
—3
-40 —
— ±1.5
— ±6.0
1.485
1.32
-2.0
740
190.6
-0.0075
-0.4
1.65
1.65
±0.5
800
206
±0.002
400
300
32
0
ΔgSTXY
ΔgSTZ
VIL
VIH
nPSD
tRESPONSE
tENABLE
tST
fGCELLXY
fGCELLZ
fCLK
VFSO
NLOUT
VXY, XZ, YZ
+0.05
+0.8
VSS
0.7 VDD
VSS+0.1
-1.0
-5.0
-0.1
+1.0
350
1.0
0.5
2.0
6.0
3.4
11
Max
3.6
600
10
+85
1.815
1.815
+2.0
860
221.5
+0.0075
+0.4
+1.2
0.3 VDD
VDD
2.0
2.0
5.0
VDD–0.1
+1.0
+5.0
Unit
V
μA
μA
°C
g
g
V
v
mg/°C
mV/g
mV/g
%/°C
Hz
Hz
kΩ
g
g
g
V
V
μg/ Hz
ms
ms
ms
kHz
kHz
kHz
V
%FSO
%
1. For a loaded output, the measurements are observed after an RC filter consisting of an internal 32 kΩ resistor and an external 3.3 nF capacitor
(recommended as a minimum to filter clock noise) on the analog
bandwidth is determined by the Capacitor added on the output.
output for each
f = 1/2π * (32 x
axis
103)
and
* C.
a 0.1μF
C = 3.3
capacitor on VDD -
nF corresponds to
GND.
BW =
The output sensor
1507 HZ, which is
the minimum to filter out internal clock noise.
2. These limits define the range of operation for which the part will meet specification.
3. Within the supply range of 2.2 and 3.6 V, the device operates as a fully calibrated linear accelerometer. Beyond these supply limits the device
may operate as a linear device but is not guaranteed to be in calibration.
4. This value is measured with g-Select in 1.5g mode.
5. The device can measure both + and – acceleration. With no input acceleration the output is at midsupply. For positive acceleration the output
will increase above VDD/2. For negative acceleration, the output will decrease below VDD/2.
6. For optimal 0g offset performance, adhere to AN3484 and AN3447
7.Product performance will not exceed this minimum level, however measurement over time will not be equal to time zero measurements for this
specific parameter.
8. The response time between 10% of full scale VDD input voltage and 90% of the final operating output voltage.
9. The response time between 10% of full scale Sleep Mode input voltage and 90% of the final operating output voltage.
10. The response time between 10% of the full scale self test input voltage and 90% of the self test output voltage.
11. A measure of the device’s ability to reject an acceleration applied 90° from the true axis of sensitivity.
Sensors
Freescale Semiconductor
MMA7361LC
3

No Preview Available !

PRINCIPLE OF OPERATION
The Freescale accelerometer is a surface-micromachined
integrated-circuit accelerometer.
The device consists of a surface micromachined
capacitive sensing cell (g-cell) and a signal conditioning ASIC
contained in a single package. The sensing element is sealed
hermetically at the wafer level using a bulk micromachined
cap wafer.
The g-cell is a mechanical structure formed from
semiconductor materials (polysilicon) using semiconductor
processes (masking and etching). It can be modeled as a set
of beams attached to a movable central mass that move
between fixed beams. The movable beams can be deflected
from their rest position by subjecting the system to an
acceleration (Figure 3).
As the beams attached to the central mass move, the
distance from them to the fixed beams on one side will
increase by the same amount that the distance to the fixed
beams on the other side decreases. The change in distance
is a measure of acceleration.
The g-cell beams form two back-to-back capacitors
(Figure 3). As the center beam moves with acceleration, the
distance between the beams changes and each capacitor's
value will change, (C = Aε/D). Where A is the area of the
beam, ε is the dielectric constant, and D is the distance
between the beams.
The ASIC uses switched capacitor techniques to measure
the g-cell capacitors and extract the acceleration data from
the difference between the two capacitors. The ASIC also
signal conditions and filters (switched capacitor) the signal,
providing a high level output voltage that is ratiometric and
proportional to acceleration.
Acceleration
protection where system integrity must be ensured over the
life of the product. Customers can use self test to verify the
solderability to confirm that the part was mounted to the PCB
correctly. To use this feature to verify the 0g-Detect function,
the accelerometer should be held upside down so that the
Z-axis experiences -1g. When the self test function is
initiated, an electrostatic force is applied to each axis to
cause it to deflect. The X- and Y-axis are deflected slightly
while the Z-axis is trimmed to deflect 1g. This procedure
assures that both the mechanical (g-cell) and electronic
sections of the accelerometer are functioning.
g-Select
The g-Select feature allows for the selection between two
sensitivities. Depending on the logic input placed on pin 10,
the device internal gain will be changed allowing it to function
with a 1.5g or 6g sensitivity (Table 3). This feature is ideal
when a product has applications requiring two different
sensitivities for optimum performance. The sensitivity can be
changed at anytime during the operation of the product. The
g-Select pin can be left unconnected for applications
requiring only a 1.5g sensitivity as the device has an internal
pull-down to keep it at that sensitivity (800 mV/g).
Table 3. g-Select Pin Description
g-Select
g-Range
Sensitivity
0 1.5g 800 mV/g
1 6g 206 mV/g
Sleep Mode
The 3 axis accelerometer provides a Sleep Mode that is
ideal for battery operated products. When Sleep Mode is
active, the device outputs are turned off, providing significant
reduction of operating current. A low input signal on pin 7
(Sleep Mode) will place the device in this mode and reduce
the current to 3 μA typ. For lower power consumption, it is
recommended to set g-Select to 1.5g mode. By placing a high
input signal on pin 7, the device will resume to normal mode
of operation.
Figure 3. Simplified Transducer Physical Model
SPECIAL FEATURES
Filtering
The 3 axis accelerometer contains an onboard single-pole
switched capacitor filter. Because the filter is realized using
switched capacitor techniques, there is no requirement for
external passive components (resistors and capacitors) to set
the cut-off frequency.
0g-Detect
The sensor offers a 0g-Detect feature that provides a logic
high signal when all three axes are at 0g. This feature
enables the application of Linear Freefall protection if the
signal is connected to an interrupt pin or a poled I/O pin on a
microcontroller.
Self Test
The sensor provides a self test feature that allows the
verification of the mechanical and electrical integrity of the
accelerometer at any time before or after installation. This
feature is critical in applications such as hard disk drive
Ratiometricity
Ratiometricity simply means the output offset voltage and
sensitivity will scale linearly with applied supply voltage. That
is, as supply voltage is increased, the sensitivity and offset
increase linearly; as supply voltage decreases, offset and
sensitivity decrease linearly. This is a key feature when
interfacing to a microcontroller or an A/D converter because
it provides system level cancellation of supply induced errors
in the analog to digital conversion process.
MMA7361LC
4
Sensors
Freescale Semiconductor

No Preview Available !

BASIC CONNECTIONS
Pin Descriptions
Top View
N/C
N/C
XOUT
YOUT
ZOUT
VSS
VDD
Self Test
N/C
N/C
g-Select
0g-Detect
N/C
Sleep
Figure 4. Pinout Description
Table 4. Pin Descriptions
Pin No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
Pin Name
N/C
XOUT
YOUT
ZOUT
VSS
VDD
Sleep
NC
0g-Detect
g-Select
N/C
N/C
Self Test
N/C
Description
No internal connection
Leave unconnected
X direction output voltage
Y direction output voltage
Z direction output voltage
Power Supply Ground
Power Supply Input
Logic input pin to enable product or Sleep Mode
No internal connection
Leave unconnected
Linear Freefall digital logic output signal
Logic input pin to select g level
Unused for factory trim
Leave unconnected
Unused for factory trim
Leave unconnected
Input pin to initiate Self Test
Unused for factory trim
Leave unconnected
Logic
Input
Logic
VDD Input
0.1 μF
Logic
Input
10 9
g-Select 0g-Delect
13
GND
2
XOUT
MMA7361LC
3.3 nF
6 VDD
3
YOUT
5
VSS
7
Sleep
3.3 nF
4
ZOUT
3.3 nF
PCB Layout
POWER SUPPLY
VDD
VSS
Sleep
g-Select
0g-Detect
Self Test
XOUT
C
YOUT
ZOUT
C VRH
P0
P1
P2
P3
C A/DIN
A/DIN
C
C A/DIN
VDD
C
VSS
Figure 6. Recommended PCB Layout for Interfacing
Accelerometer to Microcontroller
NOTES:
1. Use 0.1 µF capacitor on VDD to decouple the power
source.
2. Physical coupling distance of the accelerometer to
the microcontroller should be minimal.
3. Place a ground plane beneath the accelerometer to
reduce noise, the ground plane should be attached to
all of the open ended terminals shown in Figure 6.
4. Use a 3.3 nF capacitor on the outputs of the
accelerometer to minimize clock noise (from the
switched capacitor filter circuit).
5. PCB layout of power and ground should not couple
power supply noise.
6. Accelerometer and microcontroller should not be a
high current path.
7. A/D sampling rate and any external power supply
switching frequency should be selected such that
they do not interfere with the internal accelerometer
sampling frequency (11 kHz for the sampling
frequency). This will prevent aliasing errors.
8. 10 MΩ or higher is recommended on XOUT, YOUT and
ZOUT to prevent loss due to the voltage divider
relationship between the internal 32 kΩ resistor and
the measurement input impedance.
Figure 5. Accelerometer with Recommended
Connection Diagram
Sensors
Freescale Semiconductor
MMA7361LC
5