SiHA15N60E.pdf 데이터시트 (총 8 페이지) - 파일 다운로드 SiHA15N60E 데이타시트 다운로드

No Preview Available !

www.vishay.com
SiHA15N60E
Vishay Siliconix
E Series Power MOSFET
PRODUCT SUMMARY
VDS (V) at TJ max.
RDS(on) max. at 25 °C (Ω)
Qg max. (nC)
Qgs (nC)
Qgd (nC)
Configuration
650
VGS = 10 V
76
11
17
Single
0.28
Thin-Lead TO-220 FULLPAK
D
G
G DS
S
N-Channel MOSFET
FEATURES
• Low figure-of-merit (FOM) Ron x Qg
• Low input capacitance (Ciss)
• Reduced switching and conduction losses
• Ultra low gate charge (Qg)
• Avalanche energy rated (UIS)
• Material categorization: for definitions of compliance
please see www.vishay.com/doc?99912
APPLICATIONS
• Switch mode power supplies (SMPS)
• Power factor correction power supplies (PFC)
• Lighting
- High-intensity discharge (HID)
- Fluorescent ballast lighting
• Consumer
- Adaptors
- Televisions
- Game console
• Computing
- Adaptors
- ATX power supply
ORDERING INFORMATION
Package
Lead (Pb)-free
Thin-Lead TO-220 FULLPAK
SiHA15N60E-E3
ABSOLUTE MAXIMUM RATINGS (TC = 25 °C, unless otherwise noted)
PARAMETER
SYMBOL
Drain-Source Voltage
Gate-Source Voltage
Continuous Drain Current (TJ = 150 °C) e
Pulsed Drain Current a
Linear Derating Factor
VGS at 10 V
TC = 25 °C
TC = 100 °C
VDS
VGS
ID
IDM
Single Pulse Avalanche Energy b
Maximum Power Dissipation
Operating Junction and Storage Temperature Range
Drain-Source Voltage Slope
Reverse Diode dV/dt d
VDS = 0 V to 80 % VDS
EAS
PD
TJ, Tstg
dV/dt
Soldering Recommendations (Peak Temperature) c
for 10 s
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature.
b. VDD = 50 V, starting TJ = 25 °C, L = 11.6 mH, Rg = 25 Ω, IAS = 4.2 A.
c. 1.6 mm from case.
d. ISD ID, dI/dt = 100 A/μs, starting TJ = 25 °C.
e. Limited by maximum junction temperature.
LIMIT
600
± 30
15
9.6
39
0.27
102
34
-55 to +150
70
7.7
300
UNIT
V
A
W/°C
mJ
W
°C
V/ns
°C
S15-0867-Rev. D, 20-Apr-15
1
Document Number: 91571
For technical questions, contact: hvm@vishay.com
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

No Preview Available !

www.vishay.com
SiHA15N60E
Vishay Siliconix
THERMAL RESISTANCE RATINGS
PARAMETER
SYMBOL
Maximum Junction-to-Ambient
Maximum Junction-to-Case (Drain)
RthJA
RthJC
TYP.
-
-
MAX.
65
3.7
UNIT
°C/W
SPECIFICATIONS (TJ = 25 °C, unless otherwise noted)
PARAMETER
SYMBOL
TEST CONDITIONS
Static
Drain-Source Breakdown Voltage
VDS Temperature Coefficient
Gate-Source Threshold Voltage (N)
Gate-Source Leakage
VDS
ΔVDS/TJ
VGS(th)
IGSS
Zero Gate Voltage Drain Current
IDSS
Drain-Source On-State Resistance
Forward Transconductance
Dynamic
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Effective Output Capacitance, Energy
Related a
Effective Output Capacitance, Time
Related b
Total Gate Charge
Gate-Source Charge
Gate-Drain Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Gate Input Resistance
Drain-Source Body Diode Characteristics
RDS(on)
gfs
Ciss
Coss
Crss
Co(er)
Co(tr)
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
Rg
VGS = 0 V, ID = 250 μA
Reference to 25 °C, ID = 1 mA
VDS = VGS, ID = 250 μA
VGS = ± 20 V
VGS = ± 30 V
VDS = 600 V, VGS = 0 V
VDS = 480 V, VGS = 0 V, TJ = 125 °C
VGS = 10 V
ID = 8 A
VDS = 30 V, ID = 8 A
VGS = 0 V,
VDS = 100 V,
f = 1 MHz
VDS = 0 V to 480 V, VGS = 0 V
VGS = 10 V
ID = 8 A, VDS = 480 V
VDD = 480 V, ID = 8 A,
VGS = 10 V, Rg = 9.1 Ω
f = 1 MHz, open drain
Continuous Source-Drain Diode Current
IS
MOSFET symbol
showing the
D
Pulsed Diode Forward Current
integral reverse
G
ISM p - n junction diode
S
MIN. TYP.
600 -
- 0.71
2-
--
--
--
--
- 0.23
- 4.6
- 1350
- 70
-5
- 53
- 177
- 38
- 11
- 17
- 17
- 51
- 35
- 33
- 0.86
--
--
Diode Forward Voltage
VSD
TJ = 25 °C, IS = 8 A, VGS = 0 V
--
Reverse Recovery Time
Reverse Recovery Charge
Reverse Recovery Current
trr
Qrr
IRRM
TJ = 25 °C, IF = IS = 8 A,
dI/dt = 100 A/μs, VR = 20 V
- 410
- 5.4
- 21
Notes
a. Coss(er) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 % to 80 % VDSS.
b. Coss(tr) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 % to 80 % VDSS.
MAX. UNIT
-
-
4
± 100
±1
1
10
0.28
-
V
V/°C
V
nA
μA
μA
Ω
S
-
-
-
pF
-
-
76
- nC
-
34
77
ns
70
66
-Ω
15
A
60
1.2 V
- ns
- μC
-A
S15-0867-Rev. D, 20-Apr-15
2
Document Number: 91571
For technical questions, contact: hvm@vishay.com
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

No Preview Available !

www.vishay.com
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)
SiHA15N60E
Vishay Siliconix
50 TOP 15 V
14 V
13 V
12 V
40 11 V
10 V
9V
8V
7V
30 6 V
BOTTOM 5 V
20
TJ = 25 °C
10
0
0 5 10 15 20 25 30
VDS, Drain-to-Source Voltage (V)
Fig. 1 - Typical Output Characteristics
3
ID = 8 A
2.5
2
1.5
1
VGS = 10 V
0.5
0
- 60 - 40 - 20 0 20 40 60 80 100 120 140 160
TJ, Junction Temperature (°C)
Fig. 4 - Normalized On-Resistance vs. Temperature
30
TOP 15 V
14 V
13 V
25 12 V
11 V
10 V
9V
20 8 V
7V
BOTTOM 6 V
15
TJ = 150 °C
10
5
5V
0
0 5 10 15 20 25 30
VDS, Drain-to-Source Voltage (V)
Fig. 2 - Typical Output Characteristics
10 000
1000
100
Ciss
Coss
VGS = 0 V, f = 1 MHz
Ciss = Cgs + Cgd, Cds Shorted
Crss = Cgd
Coss = Cds + Cgd
10 Crss
1
0 100 200 300 400 500 600
VDS, Drain-to-Source Voltage (V)
Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage
50
TJ = 25 °C
40
30
20 TJ = 150 °C
10
0
0 5 10 15 20 25
VGS, Gate-to-Source Voltage (V)
2000
200
20
0
10
9
8
7
Coss
6
Eoss
5
4
3
2
1
0
100 200 300 400 500 600
VDS
Fig. 3 - Typical Transfer Characteristics
Fig. 6 - Coss and Eoss vs. VDS
S15-0867-Rev. D, 20-Apr-15
3
Document Number: 91571
For technical questions, contact: hvm@vishay.com
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

No Preview Available !

www.vishay.com
SiHA15N60E
Vishay Siliconix
24
VDS = 480 V
20
VDS = 300 V
VDS = 120 V
16
12
8
4
0
0 20 40 60 80
Qg, Total Gate Charge (nC)
Fig. 7 - Typical Gate Charge vs. Gate-to-Source Voltage
100
TJ = 150 °C
10 TJ = 25 °C
1
0.1
0.2
VGS = 0 V
0.4 0.6 0.8 1 1.2 1.4
VSD, Source-Drain Voltage (V)
1.6
Fig. 8 - Typical Source-Drain Diode Forward Voltage
100 Operation in this Area
Limited by RDS(on)
10
Limited by RDS(on)*
1
IDM Limited
0.1 μs
1 μs
10 μs
100 μs
1 ms
0.1 10 ms
0.01
TC = 25 °C
TJ = 150 °C
Single Pulse
BVDSS Limited
1 10 100 1000
VDS, Drain-to-Source Voltage (V)
* VGS > minimum VGS at which RDS(on) is specified
Fig. 9 - Maximum Safe Operating Area
20
15
10
5
0
25 50 75 100 125 150
TJ, Case Temperature (°C)
Fig. 10 - Maximum Drain Current vs. Case Temperature
750
725
700
675
650
625
600
575
550
525
- 60 - 40 - 20 0 20 40 60 80 100 120 140 160
TJ, Junction Temperature (°C)
Fig. 11 - Temperature vs. Drain-to-Source Voltage
S15-0867-Rev. D, 20-Apr-15
4
Document Number: 91571
For technical questions, contact: hvm@vishay.com
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

No Preview Available !

www.vishay.com
1
Duty Cycle = 0.5
0.2
0.1
0.1
0.05
0.02
Single Pulse
SiHA15N60E
Vishay Siliconix
0.01
0.0001
0.001
0.01
0.1
1
Pulse Time (s)
Fig. 12 - Normalized Thermal Transient Impedance, Junction-to-Case
10
VDS
VGS
RG
RD
D.U.T.
10 V
Pulse width 1 µs
Duty factor 0.1 %
+- VDD
Fig. 13 - Switching Time Test Circuit
VDS
VDS
tp
VDD
IAS
Fig. 16 - Unclamped Inductive Waveforms
VDS
90 %
10 %
VGS
td(on) tr
td(off) tf
Fig. 14 - Switching Time Waveforms
VDS
Vary tp to obtain
required IAS
RG
10 V
tp
L
D.U.T
IAS
0.01 Ω
+
- VDD
Fig. 15 - Unclamped Inductive Test Circuit
10 V
QGS
VG
QG
QGD
Charge
Fig. 17 - Basic Gate Charge Waveform
Current regulator
Same type as D.U.T.
12 V
50 kΩ
0.2 µF
0.3 µF
+
D.U.T. - VDS
VGS
3 mA
IG ID
Current sampling resistors
Fig. 18 - Gate Charge Test Circuit
S15-0867-Rev. D, 20-Apr-15
5
Document Number: 91571
For technical questions, contact: hvm@vishay.com
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000