U309.pdf 데이터시트 (총 4 페이지) - 파일 다운로드
 No Preview Available !
U308
U309
U310
MAXIMUM RATINGS
Rating
Drain-Source Voltage
Gate-Source Voltage
Gate Current
Total Device Dissipation (& T/\ = 25°C
Derate above 25°C
Operating and Storage Junction
Temperature Range
Symbol
VDS
vgs
•q
Pd
TJ. Tstg
Value
25
25
20
500
4.0
- 65 to + 1 50
Unit
Vdc
Vdc
mW
mW/°C
°C
ELECTRICAL CHARACTERISTICS (Ta = 25°C unless otherwise noted.;
OFF CHARACTERISTICS
Characteristic
Gate-Source Breakdown Voltage
G(l = 1.0 nA, V DS = 0)
Gate Reverse Current
(Vqs = -15 V)
(vGs = o,ta = i25°o
Gate Source Cutoff Voltage
(VDS = 10 V, Dl = 1.0 nA)
ON CHARACTERISTICS
U308
U309
U310
Zero-Gate-Voltage Drain CurrentO)
(Vds = 10 V, Vqs = 0)
U308
U309
U310
Gate-Source Forward Voltage
(Iq = 10 mA, V DS = 0)
SWITCHING CHARACTERISTICS
Common-Gate Forward TransconductanceO)
(Vds = V, Id = 10 mA, f = 1.0 kHz)
U308
U309
U310
Common-Gate Output Conductance
(Vds = 10 V, Dl = 10 mA, f = 1.0 kHz)
Drain-Gate Capacitance
(Vgs = -iov, vDS = iov, f = lomhz)
Gate-Source Capacitance
(Vgs = -io v, v Ds = 10 v, f = 1.0 mhz)
Equivalent Short-Circuit Input Noise Voltage
(Vds
=
10
v
-
'D
=
10 mA, f
=
100 Hz)
(1) Pulse test duration = 2.0 ms.
(2) See Figures 10 and 11 for Noise Figure and Power Gain information.
Symbol
V(BR)GSS
!GSS
VGS(off)
toss
v GS(f)
flfg
9og
Cgd
Cg S
en
CASE 27-02, STYLE 4
TO-52 (TO-206AC)
JFET
VHF/UHF AMPLIFIER
N-CHANNEL DEPLETION
Min
Typ
Max
Unit
-25 - - V
-
- -150
PA
-150
nA
-1.0
-1.0
-2.5
-
-6.0
-4.0
-6.0
V
mA
12 60
12 30
24 60
_ 1.0 V
- mmhos
10 20
10 20
10 18
150 jimhos
— — 2.5 pF
— — 5.0 PF
10 nVVfiz
6-1 89
 No Preview Available !
U308, U309, U310
FIGURE 1 - 450 MHz COMMON-GATE AMPLIFIER TEST CIRCUIT
DD
C1 = C2 -= 0.8 - 10 pF. JFD =MVM010W.
C3 = C4 * 8 35 pF Erie =539 002D.
C5 = C6 = 5000 PF Erie (2443 000).
C7 = 1000 pF. Allen Bradley =FA5C.
RFC = 0.33 /jH Miller #9230 30.
LI = One Turn =16 Cu, 1/4" ID. (Air Con
L2p= One Turn =16 Cu, 1/4" ID. (Air Co
L2s = One Turn =16 Cu, 1/4" I.D. (Air Co
FIGURE 2 - DRAIN CURRENT and TRANSFER
CHARACTERISTICS versus GATE-SOURCE VOLTAGE
10
\Vrj S =10V
'dss.
+25°C
60 ~
TA = - 55° C^
50 =
/+25° C^
40 1
'°
1 30
/+150° C
1
<
20 p
><T -550 ci^-^
150° C
FIGURE 3 - FORWARD TRANSCQNDUCTANCE
versus GATE SOURCE VOLTAGE
35
11
^vE 30
DS = iov
< 25
T A = -55°C,
*25°C
§ 20
S
< 15
f
g 10
/O50°C^
+25° C,^"
" -55°c//
+150°C
-4.0
-3.0
-2.0
Iq - V GS , GATE SOURCE VOLTAGE (V0LTSI
lDSS v GS- GATE SOURCE CUTOFF VOLTAGE (VOLTS)
3.0 2.0 1
V GS , GATE SOURCE VOLTAGE (VOLTS)
FIGURE 4 - COMMON-SOURCE OUTPUT
versus DRAIN CURRENT
r-r
y
" Yfs"
Yf s
=j --
i
t=fc
^ H-
'"5
yo s-
[\l 3S lot 1 = -b. /V
s' <
s
^
0.1 0.2 0.3 0.5 10 20 3.0 5.0 10
Dl
,
DRAIN
CURRENT
(111A)
20 30
50 100
FIGURE 5 - ON RESISTANCE and JUNCTION CAPACITANCE
versus GATE-SOURCE VOLTAGE
R D '/
/
Cgs
Cgri
i.O
7.0 6.0
5
4
3
2
V GS GATE SOURCE VOLTAGE (VOLTS)
1.1
6-190
 No Preview Available !
U308, U309, U310
FIGURE 6 - COMMON-GATE Y PARAMETER
MAGNITUDE versus FREQUENCY
Vqs = 10 V
di - 10 mA
Ta = 2 "I
Yll
Y 21
Y 22
200 300
Y 12
1
50p
700
(.FREQUENCY (MHz)
1000
FIGURE 7 - COMMON-GATE S PARAMETER
MAGNITUDE versus FREQUENCY
iS 2 n. ISnl
0.85 0.45,
lS 12 l,IS 2 2l
n-ir-,,
, ,,
,
,,
0.060 100
vos = V
_T A = 2 C
•^22
^N
Sn/
"-"str"
200 300
500 700 1000
f. FREQUENCY (MH?)
FIGURE 8 - COMMON GATE Y PARAMETER
PHASE-ANGLE versus FREQUENCY
"21. "11
180° 50°
.
"12 "22
87"
"22
20°
^"21
40° 86°
60°
80° 85"
"12
"11
__
[1
VDs = K V
'D = 10 mA
T A - 25" C
200 300
500
f. FREQUENCY (MH?)
100°
\ 120° 8<°
.
140°
\
-160° 83°
700
i
1000
FIGURE 9 - S PARAMETER PHASE ANGLE
versbs FREQUENCY
"11. "12
20° 120°
Z^Oj
"21. "22
^21
'
^22
"nS
/
\
i
/
'
V21 S.
V DS = 10V
ln = 10mA
lA = 2b u l
1*
"l
200 300
500 700 1000
f. FREQUENCY (MH?)
FIGURE 10 - NOISE FIGURE and
POWER GAIN versus DRAIN CURRENT
VDD = 20V
( = 450 MHz
BW^IOMh z
Ore Jit in F' gure 1
Gpg
NF
^
---
SO 10 12 14 16 IE
In. DRAIN CURRENT (mA)
20 22 24
FIGURE 11 - NOISE FIGURE and
POWER GAIN versus FREQUENCY
1
V DS - .u .
- Iq = 10mA
-T A = 25°C
5.0 c
:^pg
3.0
"
26
22
2
18
200 300
I, FREQUENCY (MHz
500 700 1000
6-191
 No Preview Available !
U308, U309, U310
FIGURE 12 - 450 MHz IMD EVALUATION AMPLIFIER
wB (3dB) - 36.5 MHz
D-
l
V DS 20 Vdc
Device case grounded
IM test tones - f1 - 449.5 MHz, f2 = 450.5 MHz
C1 = 1-10 pf Johanson Air variable trimmer.
C2. C5 = 100 pf feed thru button capacitor.
C3, C4, C6 = 0.5 6 pf Johanson Air variable trim
L1 = 1/8" x 1/32" x 1 5/8" copper bar
L2, L4 = Ferroxcube Vk200 choke,
L3 = 1/8" x 1/32" x 1 7/8" copper bar.
Amplifier power gain and IMD products are a function of the load impedance. For the amplifier design shown above with
C4 and C6 adjusted to reflect a load to the drain resulting in a nominal power gain of 9 dB, the 3rd order intercept point
(IP) value is 29 dBm. Adjusting C4, C6 to provide larger load values will result in higher gain, smaller bandwidth and lower
IP values. For example, a nominal gain of 13 dB can be achieved with an intercept point of 19 dBm.
FIGURE 13 - TWO TONE 3RD ORDER INTERCEPT POINT
II
U310JFET
+20 VQS-20 Vd
__RDC RDE R IN" ERC EPTP DINT
S
s
X
R*
/
/
F1 = 44i ,5MHz
F2 = 46( .5 MHz
-20
/
/
sI
FUNDAM ENT^\L0L TPU
-40
f
/
/
,
t/3RD 0R[ ER I I/ID0 JTPU
-80
-100
-i?n
-80 -60 -40 -21
INPUT POWER PER TONE (dBm)
Example of intercept point plot use:
Assume two in-band signals of -20 dBm at the amplifier input.
They will result in a 3rd order IMD signal at the output of -90
dBm. Also, each signal level at the output will be - 1 1 dBm, show-
ing an amplifier gain of 9.0 dB and an intermodulation ratio (IMR)
capability of 79 dB. The gain and IMR values apply only for signal
levels below compression.
6-192