J308.pdf 데이터시트 (총 6 페이지) - 파일 다운로드 J308 데이타시트 다운로드

No Preview Available !

J308
JFET VHF/UHF Amplifiers
NChannel — Depletion
MAXIMUM RATINGS
Rating
Drain Source Voltage
GateSource Voltage
Forward Gate Current
Total Device Dissipation
@ TA = 25°C
Derate above 25°C
Junction Temperature Range
Storage Temperature Range
Symbol
VDS
VGS
IGF
PD
TJ
Tstg
Value
25
25
10
350
2.8
65 to +125
65 to +150
Unit
Vdc
Vdc
mAdc
mW
mW/°C
°C
°C
http://onsemi.com
1
23
CASE 2911, STYLE 5
TO92 (TO226AA)
1 DRAIN
3
GATE
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Characteristic
OFF CHARACTERISTICS
Gate Source Breakdown Voltage
(IG = 1.0 μAdc, VDS = 0)
Gate Reverse Current
(VGS = 15 Vdc, VDS = 0, TA = 25°C)
(VGS = 15 Vdc, VDS = 0, TA = +125°C)
Gate Source Cutoff Voltage
(VDS = 10 Vdc, ID = 1.0 nAdc)
J308
J309
J310
ON CHARACTERISTICS
Zero Gate Voltage Drain Current(1)
(VDS = 10 Vdc, VGS = 0)
J308
J309
J310
GateSource Forward Voltage
(VDS = 0, IG = 1.0 mAdc)
Symbol
V(BR)GSS
IGSS
VGS(off)
IDSS
VGS(f)
Min
25
1.0
1.0
2.0
12
12
24
2 SOURCE
Typ Max
Unit
— — Vdc
1.0 nAdc
1.0 μAdc
Vdc
6.5
4.0
6.5
mAdc
— 60
— 30
— 60
— 1.0 Vdc
© Semiconductor Components Industries, LLC, 2006
August, 2006 Rev. 2
1
Publication Order Number:
J308/D

No Preview Available !

J308
Characteristic
SMALLSIGNAL CHARACTERISTICS
CommonSource Input Conductance
(VDS = 10 Vdc, ID = 10 mAdc, f = 100 MHz)
J308
J309
J310
CommonSource Output Conductance
(VDS = 10 Vdc, ID = 10 mAdc, f = 100 MHz)
CommonGate Power Gain
(VDS = 10 Vdc, ID = 10 mAdc, f = 100 MHz)
1. Pulse Test: Pulse Width v 300 μs, Duty Cycle v 3.0%.
SMALLSIGNAL CHARACTERISTICS (continued)
CommonSource Forward Transconductance
(VDS = 10 Vdc, ID = 10 mAdc, f = 100 MHz)
CommonGate Input Conductance
(VDS = 10 Vdc, ID = 10 mAdc, f = 100 MHz)
CommonSource Forward Transconductance
(VDS = 10 Vdc, ID = 10 mAdc, f = 1.0 kHz)
J308
J309
J310
CommonSource Output Conductance
(VDS = 10 Vdc, ID = 10 mAdc, f = 1.0 kHz)
CommonGate Forward Transconductance
(VDS = 10 Vdc, ID = 10 mAdc, f = 1.0 kHz)
J308
J309
J310
CommonGate Output Conductance
(VDS = 10 Vdc, ID = 10 mAdc, f = 1.0 kHz)
J308
J309
J310
GateDrain Capacitance
(VDS = 0, VGS = 10 Vdc, f = 1.0 MHz)
GateSource Capacitance
(VDS = 0, VGS = 10 Vdc, f = 1.0 MHz)
FUNCTIONAL CHARACTERISTICS
Noise Figure
(VDS = 10 Vdc, ID = 10 mAdc, f = 450 MHz)
Equivalent ShortCircuit Input Noise Voltage
(VDS = 10 Vdc, ID = 10 mAdc, f = 100 Hz)
Symbol
Min
Typ
Max Unit
Re(yis)
mmhos
— 0.7 —
— 0.7 —
— 0.5 —
Re(yos)
0.25
— mmhos
Gpg — 16 — dB
Re(yfs)
Re(yig)
gfs
gos
gfg
gog
Cgd
Cgs
— 12 — mmhos
— 12 — mmhos
μmhos
8000
— 20000
10000 — 20000
8000
— 18000
— — 250 μmhos
μmhos
— 13000 —
— 13000 —
— 12000 —
μmhos
— 150 —
— 100 —
— 150 —
— 1.8 2.5 pF
— 4.3 5.0 pF
NF — 1.5 — dB
en — 10 — nVń ǸHz
http://onsemi.com
2

No Preview Available !

J308
50 Ω
SOURCE
U310
C3
L1 C1
C5
L2P
C2
C6
50 Ω
LOAD
L2S
C4
C7
1.0 k
RFC
+VDD
C1 = C2 = 0.8 10 pF, JFD #MVM010W.
C3 = C4 = 8.35 pF Erie #539002D.
C5 = C6 = 5000 pF Erie (2443000).
C7 = 1000 pF, Allen Bradley #FA5C.
RFC = 0.33 μH Miller #923030.
L1 = One Turn #16 Cu, 1/4I.D. (Air Core).
L2P = One Turn #16 Cu, 1/4I.D. (Air Core).
L2S = One Turn #16 Cu, 1/4I.D. (Air Core).
Figure 1. 450 MHz CommonGate Amplifier Test Circuit
70
60
VDS = 10 V
50
IDSS
40 +25 °C
70
TA = −55°C
+25 °C
60
50
40
30 +150°C 30
20
+25 °C
20
−55 °C
10 +150°C 10
−5.0 −4.0 −3.0 −2.0 −1.0
ID − VGS, GATE−SOURCE VOLTAGE (VOLTS)
IDSS − VGS, GATE−SOURCE CUTOFF VOLTAGE (VOLTS)
0
0
Figure 2. Drain Current and Transfer
Characteristics versus GateSource Voltage
35
30 VDS = 10 V
f = 1.0 MHz
25
TA = −55°C
+25 °C
20
+150°C
15 +25 °C
10 −55 °C
+150°C
5.0
0
5.0 4.0 3.0 2.0 1.0
VGS, GATE−SOURCE VOLTAGE (VOLTS)
0
Figure 3. Forward Transconductance
versus GateSource Voltage
100 k
10 k
1.0 k
Yfs Yfs
100
1.0 k
VGS(off) = −2.3 V =
10
Yos VGS(off) = −5.7 V =
100
0.01
1.0
0.1 0.2 0.3 0.5 1.0 2.0 3.0 5.0 10 20 30 50 100
ID, DRAIN CURRENT (mA)
Figure 4. CommonSource Output
Admittance and Forward Transconductance
versus Drain Current
10 120
RDS
96
7.0
72
Cgs
4.0 48
Cgd 24
1.0
00
10 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0
VGS, GATE SOURCE VOLTAGE (VOLTS)
Figure 5. On Resistance and Junction
Capacitance versus GateSource Voltage
http://onsemi.com
3

No Preview Available !

30 3.0
24 VDS = 10 V
ID = 10 mA
TA = 25°C
18
2.4
Y11
1.8
12 Y21 1.2
6.0 Y22 0.6
Y12
0
100
200 300
500 700 1000
f, FREQUENCY (MHz)
Figure 6. CommonGate Y Parameter
Magnitude versus Frequency
J308
|S21|, |S11|
0.85 0.45
|S12|, |S22|
0.060 1.00
0.79 0.39
0.73 0.33
0.67 0.27
VDS = 10 V
ID = 10 mA
TA = 25°C
S22
S21
0.048 0.98
0.036 0.96
0.024 0.94
S11
0.61 0.21
0.012 0.92
0.55 0.15
100
S12
200 300
500 700 1000
f, FREQUENCY (MHz)
0.90
Figure 7. CommonGate S Parameter
Magnitude versus Frequency
θ21, θ11
180° 50°
170° 40°
160° 30°
150° 20°
140° 10°
130° 0°
100
θ12, θ22
−2 0° 87°
θ22 −20 °
−40 ° 86°
θ21 −60 °
−80 ° 85°
−100 °
θ12
θ11
VDS = 10 V
ID = 10 mA
TA = 25°C
200 300 500 700
f, FREQUENCY (MHz)
−120 °
−140 °
−160 °
−180 °
−200 °
1000
84°
83°
82°
Figure 8. CommonGate Y Parameter
PhaseAngle versus Frequency
θ11, θ12
−20 ° 120°
θ11
−40 ° 100° θ21
−60 ° 80°
θ22
θ21, θ22
0
−20 °
−40 °
−80 ° 60°
θ21 −60 °
θ12
−100 ° 40°
−120 ° 20°
100
VDS = 10 V
ID = 10 mA
TA = 25°C
θ11
200 300 500 700
f, FREQUENCY (MHz)
−80 °
−100 °
1000
Figure 9. S Parameter PhaseAngle
versus Frequency
8.0
7.0 VDD = 20 V
f = 450 MHz
6.0 BW 10 MHz
CIRCUIT IN FIGURE 1
5.0
4.0
3.0
Gpg
NF
24
21
18
15
12
9.0
2.0 6.0
1.0 3.0
0
4.0 6.0 8.0 10 12 14 16 18 20 22
ID, DRAIN CURRENT (mA)
Figure 10. Noise Figure and
Power Gain versus Drain Current
0
24
7.0
6.0
5.0
4.0 VDS = 10 V
ID = 10 mA
3.0 TA = 25°C
CIRCUIT IN FIGURE 1
2.0
Gpg
NF
1.0
0
50 100 200 300
f, FREQUENCY (MHz)
26
22
18
14
10
6.0
2.0
500 700 1000
Figure 11. Noise Figure and Power Gain
versus Frequency
http://onsemi.com
4

No Preview Available !

J308
C1
INPUT L1
RS = 50 Ω
C2
L2
VS
S
G
C3
U310
D
C4
C6 BW (3 dB) 36.5 MHz
ID 10 mAdc
VDS 20 Vdc
L3 OUTPUT Device case grounded
RL = 50 Ω IM test tones f1 = 449.5 MHz, f2 = 450.5 MHz
C5 C1 = 110 pF Johanson Air variable trimmer.
C2, C5 = 100 pF feed thru button capacitor.
L4 C3, C4, C6 = 0.56 pF Johanson Air variable trim-
mer.
SHIELD
VD
L1 = 1/8x 1/32x 15/8copper bar.
L2, L4 = Ferroxcube Vk200 choke.
L3 = 1/8x 1/32x 17/8copper bar.
Figure 12. 450 MHz IMD Evaluation Amplifier
Amplifier power gain and IMD products are a function of the load impedance. For the amplifier design shown above with
C4 and C6 adjusted to reflect a load to the drain resulting in a nominal power gain of 9 dB, the 3rd order intercept point (IP)
value is 29 dBm. Adjusting C4, C6 to provide larger load values will result in higher gain, smaller bandwidth and lower IP
values. For example, a nominal gain of 13 dB can be achieved with an intercept point of 19 dBm.
+40
U310 JFET
+20 VDS = 20 Vdc
ID = 10 mAdc
0 F1 = 449.5 MHz
F2 = 450.5 MHz
−20
3RD ORDER INTERCEPT POINT
FUNDAMENTAL OUTPUT
−40
−60
−80
3RD ORDER IMD OUTPUT
−100
−120
−120 −100 −80 −60 −40 −20
INPUT POWER PER TONE (dBm)
0
+20
Example of intercept point plot use:
Assume two inband signals of 20 dBm at the amplifi-
er input. They will result in a 3rd order IMD signal at
the output of 90 dBm. Also, each signal level at the
output will be 11 dBm, showing an amplifier gain of
9.0 dB and an intermodulation ratio (IMR) capability
of 79 dB. The gain and IMR values apply only for sig-
nal levels below comparison.
Figure 13. Two Tone 3rd Order Intercept Point
http://onsemi.com
5