40GP60J.pdf 데이터시트 (총 6 페이지) - 파일 다운로드 40GP60J 데이타시트 다운로드

No Preview Available !

www.DataSheet4U.com
APT40GP60J
600V
POWER MOS 7® IGBT
The POWER MOS 7® IGBT is a new generation of high voltage power IGBTs.
Using Punch Through Technology this IGBT is ideal for many high frequency,
high voltage switching applications and has been optimized for high frequency
switchmode power supplies.
• Low Conduction Loss
• Low Gate Charge
• Ultrafast Tail Current shutoff
• 100 kHz operation @ 400V, 25A
• 200 kHz operation @ 400V, 16A
• SSOA rated
EE
G C SOT-227
ISOTOP®
C"UL Recognized"
G
E
MAXIMUM RATINGS
Symbol Parameter
All Ratings: TC = 25°C unless otherwise specified.
APT40GP60J
UNIT
VCES
VGE
VGEM
I C1
I C2
I CM
SSOA
PD
TJ,TSTG
TL
Collector-Emitter Voltage
Gate-Emitter Voltage
Gate-Emitter Voltage Transient
Continuous Collector Current @ TC = 25°C
Continuous Collector Current @ TC = 110°C
Pulsed Collector Current 1 @ TC = 25°C
Switching Safe Operating Area @ TJ = 150°C
Total Power Dissipation
Operating and Storage Junction Temperature Range
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
600
±20
±30
86
40
160
160A @ 600V
284
-55 to 150
300
Volts
Amps
Watts
°C
STATIC ELECTRICAL CHARACTERISTICS
Symbol Characteristic / Test Conditions
BVCES
VGE(TH)
VCE(ON)
I CES
I GES
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 250µA)
Gate Threshold Voltage (VCE = VGE, I C = 1mA, Tj = 25°C)
Collector-Emitter On Voltage (VGE = 15V, IC = 40A, Tj = 25°C)
Collector-Emitter On Voltage (VGE = 15V, IC = 40A, Tj = 125°C)
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C) 2
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C) 2
Gate-Emitter Leakage Current (VGE = ±20V)
MIN TYP MAX UNIT
600
3 4.5 6
Volts
2.2 2.7
2.1
250
2500
µA
±100 nA
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
APT Website - http://www.advancedpower.com

No Preview Available !

DYNAMIC CHARACTERISTICS
Symbol Characteristic
Cies
Coes
Cres
VGEP
Qg
Qge
Qgc
SSOA
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Gate-to-Emitter Plateau Voltage
Total Gate Charge 3
Gate-Emitter Charge
Gate-Collector ("Miller ") Charge
Switching SOA
td(on)
tr
td(off)
tf
Eon1
Eon2
Eoff
td(on)
tr
td(off)
tf
Eon1
Eon2
Eoff
Turn-on Delay Time
Current Rise Time
Turn-off Delay Time
Current Fall Time
Turn-on Switching Energy 4
Turn-on Switching Energy (Diode) 5
Turn-off Switching Energy 6
Turn-on Delay Time
Current Rise Time
Turn-off Delay Time
Current Fall Time
Turn-on Switching Energy 4
Turn-on Switching Energy (Diode) 5
Turn-off Switching Energy 6
Test Conditions
Capacitance
VGE = 0V, VCE = 25V
f = 1 MHz
Gate Charge
VGE = 15V
VCE = 300V
IC = 40A
TJ = 150°C, RG = 5Ω, VGE =
15V, L = 100µH,VCE = 600V
Inductive Switching (25°C)
VCC(Peak) = 400V
VGE = 15V
IC = 40A
RG = 5
TJ = +25°C
MIN
160
Inductive Switching (125°C)
VCC(Peak) = 400V
VGE = 15V
IC = 40A
RG = 5
TJ = +125°C
TYP
4610
395
25
7.5
135
30
40
APT40GP60J
MAX UNIT
pF
V
nC
A
20
29
64
45
385
644
352 450
20
29
89
69
385
972
615 950
ns
µJ
ns
µJ
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
RΘJC
RΘJC
WT
Characteristic
Junction to Case (IGBT)
Junction to Case (DIODE)
Package Weight
MIN TYP MAX UNIT
.44
°C/W
N/A
29.2 gm
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
4 Eon1 is the clamped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. (See Figure24.)
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. A Combi device is used for the clamping diode as shown in the Eon2 test circuit. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance wtih JEDEC standard JESD24-1. (See Figures 21, 23.)
APT Reserves the right to change, without notice, the specifications and information contained herein.

No Preview Available !

TYPICAL PERFORMANCE CURVES
80
VGE = 15V.
250µs PULSE TEST
70 <0.5 % DUTY CYCLE
60 TC=-55°C
50
40
30
20 TC=125°C
10
TC=25°C
0
0 0.5 1 1.5 2 2.5 3
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics(VGE = 15V)
250
250µs PULSE TEST
<0.5 % DUTY CYCLE
200
150
100 TJ = -55°C
50 TJ = 25°C
TJ = 125°C
0
0 1 2 3 4 5 6 7 8 9 10
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
3.5
TJ = 25°C.
250µs PULSE TEST
3
IC= 80A
<0.5 % DUTY CYCLE
2.5
IC= 40A
2 IC= 20A
1.5
1
0.5
0
6 8 10 12 14 16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
1.2
1.15
1.10
1.05
1.0
0.95
0.9
0.85
0.8
-50 -25 0 25 50 75 100 125 150
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Breakdown Voltage vs. Junction Temperature
80
VGE = 10V.
250µs PULSE TEST
70 <0.5 % DUTY CYCLE
60
TC=-55°C
APT40GP60J
50
40
30
20
10 TC=125°C
TC=25°C
0
0 0.5 1 1.5 2 2.5 3
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 2, Output Characteristics (VGE = 10V)
16
IC = 40A
14 TJ = 25°C
12 VCE=120V
10 VCE=300V
8 VCE=480V
6
4
2
0
0 20 40 60 80 100 120 140
GATE CHARGE (nC)
FIGURE 4, Gate Charge
3.5
VGE = 15V.
250µs PULSE TEST
3 <0.5 % DUTY CYCLE
IC= 80A
2.5
2
IC= 20A
1.5
IC= 40A
1
0.5
0
-50 -25 0 25 50 75 100 125
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
120
100
80
60
40
20
0
-50 -25 0 25 50 75 100 125 150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature

No Preview Available !

40
35
VGE= 10V
30
25
VGE= 15V
20
15
10 VCE = 400V
TJ = 25°C, TJ =125°C
5 RG = 5
L = 100 µH
0
0 20 40 60 80 100
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
120
100 TJ = 25 or 125°C,VGE = 10V
80
60
40
20 TJ = 25 or 125°C,VGE = 15V
RG =5, L = 100µH, VCE = 400V
0
0 20 40 60 80 100
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
3000
2500
VCE = 400V
VGE = +15V
RG = 5
TJ =125°C, 15V
TJ=125°C,10V
2000
1500 TJ = 25°C, 10V
1000
500
TJ = 25°C, 15V
0
0 20 40 60 80 100
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
4000
3500
3000
VCE = 400V
TJ = 125°C
VGE = +15V
Eon2 80A
2500
2000
Eoff 80A
1500
Eon2 40A
1000
Eoff 40A
500
Eon2 20A
0 Eoff20A
0 10 20 30 40 50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
APT40GP60J
100 VGE =15V,TJ=125°C
80
VGE =15V,TJ=25°C
VGE =10V,TJ=125°C
60
40 VGE =10V,TJ=25°C
20 VCE = 400V
RG = 5
L = 100 µH
0
0 20 40 60 80 100
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
100
RG =5, L = 100µH, VCE = 400V
TJ = 125°C, VGE = 10V or 15V
80
60
40
20 TJ = 25°C, VGE = 10V or 15V
0
0 20 40 60 80 100
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
2000
1500
VCE = 400V
VGE = +15V
RG = 5
TJ = 125°C, VGE = 10V or 15V
1000
500
0 TJ = 25°C, VGE = 10V or 15V
0 20 40 60 80 100
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
3000
2500
VCE = 400V
VGE = +15V
RG = 5
Eon2 80A
2000
1500 Eoff 80A
1000
Eon2 40A
500 Eoff 40A
Eon2 20A
0 Eoff 20A
0 25 50 75 100 125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature

No Preview Available !

TYPICAL PERFORMANCE CURVES
10,000
5,000
Cies
1,000
500
100
50
10
Coes
Cres
0
0 10 20 30 40 50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
APT40GP60J
180
160
140
120
100
80
60
40
20
0
0 100 200 300 400 500 600 700
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18, Minimim Switching Safe Operating Area
0.45
0.40 0.9
0.35
0.7
0.30
0.25
0.20
0.15
0.10
0.05
0
10-5
0.5
Note:
t1
0.3
t2
Duty Factor D = t1/t2
0.1 Peak TJ = PDM x ZθJC + TC
0.05
SINGLE PULSE
10-4 10-3 10-2 10-1 1.0
RECTANGULAR PULSE DURATION (SECONDS)
FIGURE 1, MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs PULSE DURATION
10
Junction
temp. ( ”C)
RC MODEL
0.109
0.0107F
Power
(Watts)
0.180
0.149F
Case temperature
0.151
1.22F
FIGURE 19B, TRANSIENT THERMAL IMPEDANCE MODEL
210
100
50 Fmax = min(fmax1, fmax 2 )
f max 1
=
t d (on )
+
0.05
t r + t d(off )
+
tf
TJ = 125°C
TC = 75°C
D = 50 %
fmax 2
=
Pdiss Pcond
Eon2 + Eoff
VCE = 400V
RG = 5
10
Pdiss
=
TJ TC
R θJC
10 20 30 40 50 60
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector
Current