P80C54UFPN.pdf 데이터시트 (총 30 페이지) - 파일 다운로드 P80C54UFPN 데이타시트 다운로드

No Preview Available !

INTEGRATED CIRCUITS
8XC52/54/58/80C32
8XC51FA/FB/FC/80C51FA
8XC51RA+/RB+/RC+/RD+/80C51RA +
80C51 8-bit microcontroller family
8K–64K/256–1K OTP/ROM/ROMless,
low voltage (2.7V–5.5V), low power, high speed (33 MHz)
Product specification
Supersedes data of 1998 Jun 04
IC20 Data Handbook
1999 Apr 01
Philips
Semiconductors

No Preview Available !

Philips Semiconductors
80C51 8-bit microcontroller family
8K–64K/256–1K OTP/ROM/ROMless, low voltage (2.7V–5.5V),
low power, high speed (33 MHz)
Product specification
8XC52/54/58/80C32
8XC51FA/FB/FC/80C51FA
8XC51RA+/RB+/RC+/RD+/80C51RA+
DESCRIPTION
Three different Single-Chip 8-Bit Microcontroller families are
presented in this datasheet:
80C32/8XC52/8XC54/8XC58
80C51FA/8XC51FA/8XC51FB/8XC51FC
80C51RA+/8XC51RA+/8XC51RB+/8XC51RC+/8XC51RD+
For applications requiring 4K ROM/EPROM, see the 8XC51/80C31
8-bit CMOS (low voltage, low power, and high speed)
microcontroller families datasheet.
All the families are Single-Chip 8-Bit Microcontrollers manufactured
in advanced CMOS process and are derivatives of the 80C51
microcontroller family. All the devices have the same instruction set
as the 80C51.
These devices provide architectural enhancements that make them
applicable in a variety of applications for general control systems.
ROM/EPROM
Memory Size
(X by 8)
RAM Size
(X by 8)
Programmable
Timer Counter
(PCA)
80C31/8XC51
0K/4K
128 No
80C32/8XC52/54/58
0K/8K/16K/32K
256
No
80C51FA/8XC51FA/FB/FC
0K/8K/16K/32K
256
Yes
80C51RA+/8XC51RA+/RB+/RC+
0K/8K/16K/32K
512
Yes
8XC51RD+
64K
1024
Yes
Hardware
Watch Dog
Timer
No
No
No
Yes
Yes
The ROMless devices, 80C32, 80C51FA, and 80C51RA+ can
address up to 64K of external memory. All the devices have four
8-bit I/O ports, three 16-bit timer/event counters, a multi-source,
four-priority-level, nested interrupt structure, an enhanced UART
and on-chip oscillator and timing circuits. For systems that require
extra memory capability up to 64k bytes, each can be expanded
using standard TTL-compatible memories and logic.
Its added features make it an even more powerful microcontroller for
applications that require pulse width modulation, high-speed I/O and
up/down counting capabilities such as motor control. It also has a
more versatile serial channel that facilitates multiprocessor
communications.
FEATURES
80C51 Central Processing Unit
Speed up to 33MHz
Full static operation
Operating voltage range: 2.7V to 5.5V @ 16MHz
Security bits:
ROM – 2 bits
OTP–EPROM – 3 bits
Encryption array – 64 bytes
RAM expandable to 64K bytes
4 level priority interrupt
6 or7 interrupt sources, depending on device
Four 8-bit I/O ports
Full-duplex enhanced UART
Framing error detection
Automatic address recognition
Power control modes
Clock can be stopped and resumed
Idle mode
Power down mode
Programmable clock out
Second DPTR register
Asynchronous port reset
Low EMI (inhibit ALE)
1999 Apr 01
2 853-2068 21142

No Preview Available !

Philips Semiconductors
80C51 8-bit microcontroller family
8K–64K/256–1K OTP/ROM/ROMless, low voltage (2.7V–5.5V),
low power, high speed (33 MHz)
Product specification
8XC52/54/58/80C32
8XC51FA/FB/FC/80C51FA
8XC51RA+/RB+/RC+/RD+/80C51RA+
BLOCK DIAGRAM
VCC
VSS
RAM ADDR
REGISTER
RAM
P0.0–P0.7
PORT 0
DRIVERS
PORT 0
LATCH
P2.0–P2.7
PORT 2
DRIVERS
PORT 2
LATCH
ROM/EPROM
B
REGISTER
ACC
TMP2
TMP1
STACK
POINTER
8
PROGRAM
ADDRESS
REGISTER
PSEN
ALE/PROG
EAVPP
RST
TIMING
AND
CONTROL
PD
OSCILLATOR
XTAL1
XTAL2
ALU
PSW
PORT 1
LATCH
PORT 1
DRIVERS
P1.0–P1.7
SFRs
TIMERS
P.C.A. (FA & RA+ only)
PORT 3
LATCH
BUFFER
PC
INCRE-
MENTER
8
PROGRAM
COUNTER
DPTR’S
MULTIPLE
PORT 3
DRIVERS
P3.0–P3.7
16
SU00831B
1999 Apr 01
3

No Preview Available !

Philips Semiconductors
80C51 8-bit microcontroller family
8K–64K/256–1K OTP/ROM/ROMless, low voltage (2.7V–5.5V),
low power, high speed (33 MHz)
Product specification
8XC52/54/58/80C32
8XC51FA/FB/FC/80C51FA
8XC51RA+/RB+/RC+/RD+/80C51RA+
LOGIC SYMBOL
VCC
XTAL1
VSS
ADDRESS AND
DATA BUS
XTAL2
RST
EA/VPP
PSEN
ALE/PROG
RxD
TxD
INT0
INT1
T0
T1
WR
RD
T2
T2EX
ADDRESS BUS
SU00830
PIN CONFIGURATIONS
DUAL IN-LINE PACKAGE PIN FUNCTIONS
T2/P1.0 1
T2EX/P1.1 2
ECI/P1.2 3
CEX0/P1.3 4
CEX1/P1.4 5
CEX2/P1.5 6
CEX3/P1.6 7
CEX4/P1.7 8
RST 9
RxD/P3.0 10
TxD/P3.1 11
INT0/P3.2 12
INT1/P3.3 13
T0/P3.4 14
T1/P3.5 15
WR/P3.6 16
RD/P3.7 17
XTAL2 18
XTAL1 19
VSS 20
40 VCC
39 P0.0/AD0
38 P0.1/AD1
37 P0.2/AD2
36 P0.3/AD3
35 P0.4/AD4
34 P0.5/AD5
33 P0.6/AD6
32 P0.7/AD7
DUAL
IN-LINE
PACKAGE
31 EA/VPP
30 ALE/PROG
29 PSEN
28 P2.7/A15
27 P2.6/A14
26 P2.5/A13
25 P2.4/A12
24 P2.3/A11
23 P2.2/A10
22 P2.1/A9
21 P2.0/A8
SU00021
PLASTIC LEADED CHIP CARRIER PIN FUNCTIONS
6 1 40
7 39
LCC
17 29
18 28
Pin Function
1 NIC*
2 P1.0/T2
3 P1.1/T2EX
4 P1.2/ECI
5 P1.3/CEX0
6 P1.4/CEX1
7 P1.5/CEX2
8 P1.6/CEX3
9 P1.7/CEX4
10 RST
11 P3.0/RxD
12 NIC*
13 P3.1/TxD
14 P3.2/INT0
15 P3.3/INT1
Pin Function
16 P3.4/T0
17 P3.5/T1
18 P3.6/WR
19 P3.7/RD
20 XTAL2
21 XTAL1
22 VSS
23 NIC*
24 P2.0/A8
25 P2.1/A9
26 P2.2/A10
27 P2.3/A11
28 P2.4/A12
29 P2.5/A13
30 P2.6/A14
* NO INTERNAL CONNECTION
Pin Function
31 P2.7/A15
32 PSEN
33 ALE/PROG
34 NIC*
35 EA/VPP
36 P0.7/AD7
37 P0.6/AD6
38 P0.5/AD5
39 P0.4/AD4
40 P0.3/AD3
41 P0.2/AD2
42 P0.1/AD1
43 P0.0/AD0
44 VCC
SU00023
PLASTIC QUAD FLAT PACK
PIN FUNCTIONS
44 34
1 33
PQFP
11 23
Pin Function
1 P1.5/CEX2
2 P1.6/CEX3
3 P1.7/CEX4
4 RST
5 P3.0/RxD
6 NIC*
7 P3.1/TxD
8 P3.2/INT0
9 P3.3/INT1
10 P3.4/T0
11 P3.5/T1
12 P3.6/WR
13 P3.7/RD
14 XTAL2
15 XTAL1
12 22
Pin Function
16 VSS
17 NIC*
18 P2.0/A8
19 P2.1/A9
20 P2.2/A10
21 P2.3/A11
22 P2.4/A12
23 P2.5/A13
24 P2.6/A14
25 P2.7/A15
26 PSEN
27 ALE/PROG
28 NIC*
29 EA/VPP
30 P0.7/AD7
* NO INTERNAL CONNECTION
Pin Function
31 P0.6/AD6
32 P0.5/AD5
33 P0.4/AD4
34 P0.3/AD3
35 P0.2/AD2
36 P0.1/AD1
37 P0.0/AD0
38 VCC
39 NIC*
40 P1.0/T2
41 P1.1/T2EX
42 P1.2/ECI
43 P1.3/CEX0
44 P1.4/CEX1
SU00024
1999 Apr 01
4

No Preview Available !

Philips Semiconductors
80C51 8-bit microcontroller family
8K–64K/256–1K OTP/ROM/ROMless, low voltage (2.7V–5.5V),
low power, high speed (33 MHz)
Product specification
8XC52/54/58/80C32
8XC51FA/FB/FC/80C51FA
8XC51RA+/RB+/RC+/RD+/80C51RA+
PIN DESCRIPTIONS
PIN NUMBER
MNEMONIC DIP LCC QFP TYPE NAME AND FUNCTION
VSS
VCC
P0.0–0.7
20 22
16
40 44
38
39–32 43–36 37–30
I Ground: 0V reference.
I Power Supply: This is the power supply voltage for normal, idle, and power-down operation.
I/O Port 0: Port 0 is an open-drain, bidirectional I/O port. Port 0 pins that have 1s written to
them float and can be used as high-impedance inputs. Port 0 is also the multiplexed
low-order address and data bus during accesses to external program and data memory. In
this application, it uses strong internal pull-ups when emitting 1s. Port 0 also outputs the
code bytes during program verification and received code bytes during EPROM
programming. External pull-ups are required during program verification.
P1.0–P1.7
1–8 2–9 40–44, I/O Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pull-ups. Port 1 pins that have 1s
1–3 written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs,
port 1 pins that are externally pulled low will source current because of the internal pull-ups.
(See DC Electrical Characteristics: IIL). Port 1 also receives the low-order address byte
during program memory verification.
Alternate functions for 8XC51FX and 8XC51RX+ Port 1 include:
1 2 40 I/O T2 (P1.0): Timer/Counter 2 external count input/Clockout (see Programmable Clock-Out)
2 3 41 I
T2EX (P1.1): Timer/Counter 2 Reload/Capture/Direction Control
3 4 42 I
ECI (P1.2): External Clock Input to the PCA
4 5 43 I/O CEX0 (P1.3): Capture/Compare External I/O for PCA module 0
5 6 44 I/O CEX1 (P1.4): Capture/Compare External I/O for PCA module 1
6 7 1 I/O CEX2 (P1.5): Capture/Compare External I/O for PCA module 2
7 8 2 I/O CEX3 (P1.6): Capture/Compare External I/O for PCA module 3
8 9 3 I/O CEX4 (P1.7): Capture/Compare External I/O for PCA module 4
P2.0–P2.7
21–28 24–31 18–25
I/O Port 2: Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. Port 2 pins that have 1s
written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs,
port 2 pins that are externally being pulled low will source current because of the internal
pull-ups. (See DC Electrical Characteristics: IIL). Port 2 emits the high-order address byte
during fetches from external program memory and during accesses to external data memory
that use 16-bit addresses (MOVX @DPTR). In this application, it uses strong internal
pull-ups when emitting 1s. During accesses to external data memory that use 8-bit addresses
(MOV @Ri), port 2 emits the contents of the P2 special function register. Some Port 2 pins
receive the high order address bits during EPROM programming and verification.
P3.0–P3.7 10–17 11,
5,
13–19 7–13
10 11
11 13
12 14
13 15
14 16
15 17
16 18
17 19
5
7
8
9
10
11
12
13
I/O Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. Port 3 pins that have 1s
written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs,
port 3 pins that are externally being pulled low will source current because of the pull-ups.
(See DC Electrical Characteristics: IIL). Port 3 also serves the special features of the 80C51
family, as listed below:
I RxD (P3.0): Serial input port
O TxD (P3.1): Serial output port
I INT0 (P3.2): External interrupt
I INT1 (P3.3): External interrupt
I T0 (P3.4): Timer 0 external input
I T1 (P3.5): Timer 1 external input
O WR (P3.6): External data memory write strobe
O RD (P3.7): External data memory read strobe
RST
9 10 4
I Reset: A high on this pin for two machine cycles while the oscillator is running, resets the
device. An internal diffused resistor to VSS permits a power-on reset using only an external
capacitor to VCC.
ALE/PROG 30
33
27
O Address Latch Enable/Program Pulse: Output pulse for latching the low byte of the
address during an access to external memory. In normal operation, ALE is emitted at a
constant rate of 1/6 the oscillator frequency, and can be used for external timing or clocking.
Note that one ALE pulse is skipped during each access to external data memory. This pin is
also the program pulse input (PROG) during EPROM programming. ALE can be disabled by
setting SFR auxiliary.0. With this bit set, ALE will be active only during a MOVX instruction.
1999 Apr 01
5