9368.pdf 데이터시트 (총 6 페이지) - 파일 다운로드 9368 데이타시트 다운로드

No Preview Available !

October 1988
Revised March 2000
DM9368
7-Segment Decoder/Driver/Latch
with Constant Current Source Outputs
General Description
The DM9368 is a 7-segment decoder driver incorporating
input latches and constant current output circuits to drive
common cathode type LED displays directly.
Ordering Code:
Order Number Package Number
Package Description
DM9638N
N16E
16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide
Connection Diagram
Logic Symbol
www.DataSheet4U.com
Pin Descriptions
VCC = Pin 16
GND = PIN 8
Pin Name
A0–A3
RBO
RBI
a–g
LE
Description
Address (Data) Inputs
Ripple Blanking Output (Active LOW)
Ripple Blanking Input (Active LOW)
Segment Drivers-Outputs
Latch Enable Input (Active LOW)
© 2000 Fairchild Semiconductor Corporation DS009796
www.fairchildsemi.com

No Preview Available !

Truth Table
www.DataSheet4U.com
*The RBI will blank the display only if a binary zero is stored in the latches.
*The RBO used as an input overrides all other input conditions.
H = HIGH Voltage Level
L = LOW Voltage Level
X = Immaterial
Functional Description
The DM9368 is a 7-segment decoder driver designed to
drive 7-segment common cathode LED displays. The
DM9368 drives any common cathode LED display rated at
a nominal 20 mA at 1.7V per segment without need for cur-
rent limiting resistors.
This device accepts a 4-bit binary code and produces out-
put drive to the appropriate segments of the 7-segment dis-
play. It has a hexadecimal decode format which produces
numeric codes “0” thru “9” and alpha codes “A” through “F”
using upper and lower case fonts.
Latches on the four data inputs are controlled by an active
LOW latch enable LE. When the LE is LOW, the state of
the outputs is determined by the input data. When the LE
goes HIGH, the last data present at the inputs is stored in
the latches and the outputs remain stable. The LE pulse
width necessary to accept and store data is typically 30 ns
which allows data to be strobed into the DM9368 at normal
TTL speeds. This feature means that data can be routed
directly from high speed counters and frequency dividers
into the display without slowing down the system clock or
providing intermediate data storage.
Another feature of the DM9368 is that the unit loading on
the data inputs is very low (100 µA Max) when the latch
enable is HIGH. This allows DM9368s to be driven from an
MOS device in multiplex mode without the need for drivers
on the data lines.
The DM9368 also has provision for automatic blanking of
the leading and/or trailing edge zeros in a multidigit decimal
number, resulting in an easily readable decimal display
conforming to normal writing practice. In an eight digit
mixed integer fraction decimal representation, using the
automatic blanking capability, 0060.0300 would be dis-
played as 60.03. Leading edge zero suppression is
obtained by connecting the Ripple Blanking Output (RBO)
of a decoder to the Ripple Blanking Input (RBI) of the next
lower stage device. The most significant decoder stage
should have the RBI input grounded; and since suppres-
sion of the least significant integer zero in a number is not
usually desired, the RBI input of this decoder stage should
be left open. A similar procedure for the fractional part of a
display will provide automatic suppression of trailing edge
zeros. The RBO terminal of the decoder can be OR-tied
with a modulating signal via an isolating buffer to achieve
pulse duration intensity modulation. A suitable signal can
be generated for this purpose by forming a variable fre-
quency multivibrator with a cross coupled pair of TTL or
DTL gates.
www.fairchildsemi.com
2

No Preview Available !

Logic Diagram
Numerical Designations
www.DataSheet4U.com
Parallel Data Display System with Ripply Blanking
Common Cathode LED Display
3 www.fairchildsemi.com

No Preview Available !

Display Demultiplexing System with Ripple Blanking
Common Cathode LED Display
www.DataSheet4U.com
Note: Digit address data must be non-overlapping. Standard TTL decoders like the 9301, 9311, 7442 or 74155 must be strobed, since the address decoding
glitches could cause erroneous data to be strobed into the latches.
www.fairchildsemi.com
4

No Preview Available !

www.DataSheet4U.com
Absolute Maximum Ratings(Note 1)
Supply Voltage
7V
Input Voltage
5.5V
Operating Free Air Temperature Range 0°C to +70°C
Storage Temperature Range
65°C to +150°C
Note 1: The “Absolute Maximum Ratings” are those values beyond which
the safety of the device cannot be guaranteed. The device should not be
operated at these limits. The parametric values defined in the Electrical
Characteristics tables are not guaranteed at the absolute maximum ratings.
The “Recommended Operating Conditions” table will define the conditions
for actual device operation.
Recommended Operating Conditions
Symbol
VCC
VIH
VIL
IOH
IOL
TA
tS(H)
tH(H)
tS(L)
tH(L)
tW(L)
IOH
IOL
Parameter
Supply Voltage
HIGH Level Input Voltage
LOW Level Input Voltage
HIGH Level Output Current
LOW Level Output Current RBO
Free Air Operating Temperature
Setup Time HIGH
An to LE
Hold Time HIGH
An to LE
Setup Time LOW
An to LE
Hold Time LOW
An to LE
LE Pulse Width LOW
Segment Output HIGH Current
Segment Output LOW Current
Min
4.75
2
0
30
0
20
0
45
16
250
Electrical Characteristics
Over recommended operating free air temperature range (unless otherwise noted)
Symbol
Parameter
Conditions
VI Input Clamp Voltage
VCC = Min, II = −12 mA
VOH HIGH Level
VCC = Min, IOH = Max,
Output Voltage
VIL = Max
VOL LOW Level
VCC = Min, IOL = Max,
Output Voltage
VIH = Min
II
Input Current @ Max Input Voltage
VCC = Max, VI = 5.5V
IIH HIGH Level Input Current
VCC = Max, VI = 2.4V
IIL LOW Level Input Current
VCC = Max, VI = 0.4V
IOS Short Circuit Output Current
VCC = Max (Note 3)
ICC Supply Current
VCC = Max, Outputs OPEN,
Data & Latch Inputs = 0V
Note 2: All typicals are at VCC = 5V, TA = 25°C.
Note 3: Not more than one output should be shorted at a time.
Switching Characteristics
VCC = 5.0V, TA = 25°C
Symbol
Parameter
tPLH Propagation Delay
tPHL
An to a–g
tPLH Propagation Delay
tPHL LE to a–g
5
Nom
5
80
Max
5.25
0.8
3.2
70
22
250
Units
V
V
V
µA
mA
°C
ns
ns
ns
ns
ns
mA
µA
Typ
Min Max
(Note 2)
1.5
2.4 3.4
0.2 0.4
1
40
1.6
18 57
67
Units
V
V
V
mA
µA
mA
mA
mA
CL = 15 pF, RL = 100
Min Max
50
75
70
90
Units
ns
ns
www.fairchildsemi.com