AUIRL7732S2TR.pdf 데이터시트 (총 11 페이지) - 파일 다운로드 AUIRL7732S2TR 데이타시트 다운로드

No Preview Available !

AUTOMOTIVE GRADE
Logic Level
Advanced Process Technology
Optimized for Automotive DC-DC, Motor Drive and
other Heavy Load Applications
Exceptionally Small Footprint and Low Profile
High Power Density
Low Parasitic Parameters
Dual Sided Cooling
175°C Operating Temperature
Repetitive Avalanche Capability for Robustness and
Reliability
Lead free, RoHS and Halogen free
D
PD - 97635A
AUIRL7732S2TR
AUIRL7732S2TR1
DirectFET® Power MOSFET ‚
V(BR)DSS
RDS(on) typ.
max.
ID (Silicon Limited)
Qg
40V
5.0mΩ
6.6mΩ
58A
22nC
S
GD
S
Applicable DirectFET Outline and Substrate Outline 
SB SC
M2
M4
SC
L4
DirectFET™ ISOMETRIC
L6 L8
Description
The AUIRL7732S2 combines the latest Automotive HEXFET® Power MOSFET Silicon technology with the advanced DirectFET® packaging to achieve
low gate charge as well as the lowest on-state resistance in a package that has the footprint which is 38% smaller than an SO-8 and only 0.7mm profile.
The DirectFET® package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-
red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET®
package allows dual sided cooling to maximize thermal transfer in automotive power systems.
This HEXFET® Power MOSFET is designed for applications where efficiency and power density are of value. The advanced DirectFET® packaging
platform coupled with the latest silicon technology allows the AUIRL7732S2 to offer substantial system level savings and performance improvement
specifically in high frequency DC-DC, motor drive and other heavy load applications on ICE, HEV and EV platforms. The AUIRL7732S2 can be utilized
together with the AUIRL7736M2 as a control/sync MOSFET pair in a buck converter topology. This MOSFET utilizes the latest processing techniques
to achieve low on-resistance and low Qg per silicon area . Additional features of this MOSFET are 175°C operating junction temperature and high
repetitive peak current capability. These features combine to make this MOSFET a highly efficient, robust and reliable device for high current automotive
applications.
Absolute Maximum Ratings
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only; and
functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied.Exposure to absolute-
maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under
board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless otherwise specified.
Parameter
Max.
Units
VDS Drain-to-Source Voltage
VGS
ID @ TC = 25°C
ID @ TC = 100°C
ID @ TA = 25°C
IDM
PD @TC = 25°C
PEDAS@TA = 25°C
EAS (tested)
Gate-to-Source Voltage
fContinuous Drain Current, VGS @ 10V (Silicon Limited)
fContinuous Drain Current, VGS @ 10V (Silicon Limited)
eContinuous Drain Current, VGS @ 10V (Silicon Limited)
iPulsed Drain Current
fPower Dissipation
ePower Dissipation
hSingle Pulse Avalanche Energy (Thermally Limited)
hSingle Pulse Avalanche Energy Tested Value
ÃgIAR Avalanche Current
gEAR Repetitive Avalanche Energy
TP Peak Soldering Temperature
TJ Operating Junction and
TSTG
Storage Temperature Range
Thermal Resistance
40
± 16
58
41
14
230
41
2.2
46
124
See Fig. 18a,18b,16,17
260
-55 to + 175
V
A
W
mJ
A
mJ
°C
RθJA
RθJA
RθJA
RθJCan
RθJ-PCB
Parameter
eJunction-to-Ambient
jJunction-to-Ambient
kJunction-to-Ambient
flJunction-to-Can
Junction-to-PCB Mounted
fLinear Derating Factor
Typ.
–––
12.5
20
–––
1.0
Max.
67
–––
–––
3.7
–––
0.27
Units
°C/W
W/°C
HEXFET® is a registered trademark of International Rectifier.
www.irf.com
1
04/07/11

No Preview Available !

AUIRL7732S2TR/TR1
Static Characteristics @ TJ = 25°C (unless otherwise stated)
Parameter
Min. Typ. Max. Units
Conditions
V(BR)DSS
ΔV(BR)DSS/ΔTJ
RDS(on)
VGS(th)
ΔVGS(th)/ΔTJ
gfs
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Gate Threshold Voltage Coefficient
Forward Transconductance
40 ––– ––– V VGS = 0V, ID = 250μA
––– 0.03 ––– V/°C Reference to 25°C, ID = 1mA
i––– 5.0 6.6 mΩ VGS = 10V, ID = 35A
i––– 7.5 10.5
VGS = 4.5V, ID = 29A
1.0
–––
1.8
-7.1
2.5
–––
V
mV/°C
VDS = VGS, ID = 50μA
64 ––– ––– S VDS = 10V, ID = 35A
RG Gate Resistance
––– 0.64 –––
Ω
IDSS
Drain-to-Source Leakage Current
––– –––
5
μA VDS = 40V, VGS = 0V
––– ––– 250
VDS = 40V, VGS = 0V, TJ = 125°C
IGSS
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
–––
–––
––– 100
––– -100
nA
VGS = 16V
VGS = -16V
Dynamic Characteristics @ TJ = 25°C (unless otherwise stated)
Parameter
Min. Typ. Max. Units
Conditions
Qg
Qgs1
Qgs2
Qgd
Total Gate Charge
Pre-Vth Gate-to-Source Charge
Post-Vth Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
––– 22
33
VDS = 20V
––– 3.3 –––
VGS = 4.5V
––– 2.8 ––– nC ID = 35A
––– 13 –––
See Fig.11
Qgodr
Gate Charge Overdrive
––– 2.9 –––
Qsw
Qoss
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Coss
Coss
Coss eff.
Switch Charge (Qgs2 + Qgd)
Output Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Output Capacitance
Output Capacitance
Effective Output Capacitance
––– 15.8 –––
––– 13 –––
––– 21 –––
––– 123 –––
––– 22 –––
––– 37 –––
––– 2020 –––
––– 410 –––
––– 210 –––
––– 1460 –––
––– 365 –––
––– 630 –––
ÃinC VDS = 16V, VGS = 0V
VDD = 20V, VGS = 4.5V
ns ID = 35A
RG = 6.8Ω
VGS = 0V
VDS = 25V
pF ƒ = 1.0MHz
VGS = 0V, VDS = 1.0V, f=1.0MHz
VGS = 0V, VDS = 32V, f=1.0MHz
VGS = 0V, VDS = 0V to 32V
Diode Characteristics @ TJ = 25°C (unless otherwise stated)
Parameter
Min. Typ. Max. Units
Conditions
IS Continuous Source Current
(Body Diode)
––– ––– 58
MOSFET symbol
A showing the
D
ÃgISM Pulsed Source Current
(Body Diode)
VSD Diode Forward Voltage
trr Reverse Recovery Time
Qrr Reverse Recovery Charge
––– ––– 230
––– ––– 1.3
integral reverse
ip-n junction diode.
V IS = 35A, VGS = 0V
G
i––– 23 35 ns IF = 35A, VDD = 20V
––– 16 24 nC di/dt = 100A/μs
S
ƒ Surface mounted on 1 in. square Cu
(still air).
Notes  through Š are on page 11
2
‰ Mounted to a PCB with small
clip heatsink (still air)
‰ Mounted on minimum footprint full size
board with metalized back and with small
clip heatsink (still air)
www.irf.com

No Preview Available !

AUIRL7732S2TR/TR1
Qualification Information
Qualification Level
Automotive
(per AEC-Q101) ††
Comments: This part number(s) passed Automotive qualification.
IR’s Industrial and Consumer qualification level is granted by
extension of the higher Automotive level.
Moisture Sensitivity Level
Machine Model
SMALL-CAN
ESD
RoHS Compliant
Human Body Model
Charged Device
Model
MSL1, 260°C
Class M4 (+/- 425V)†††
AEC-Q101-002
Class H1B (+/- 1000V)†††
AEC-Q101-001
N/A
AEC-Q101-005
Yes
† Qualification standards can be found at International Rectifier’s web site: http://www.irf.com
†† Exceptions to AEC-Q101 requirements are noted in the qualification report.
††† Highest passing voltage.
www.irf.com
3

No Preview Available !

AUIRL7732S2TR/TR1
1000
100
60μs PULSE WIDTH
Tj = 25°C
10
TOP
BOTTOM
VGS
10V
8.0V
6.0V
4.5V
3.5V
3.0V
2.8V
2.5V
1
0.1
0.1
2.5V
1
10 100 1000
VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
16
14 ID = 35A
12
10 TJ = 125°C
8
6
4 TJ = 25°C
2
0
2 4 6 8 10 12 14 16 18 20
VGS, Gate -to -Source Voltage (V)
Fig 3. Typical On-Resistance vs. Gate Voltage
1000
100 TJ = -40°C
TJ = 25°C
TJ = 175°C
10
1
VDS = 25V
60μs PULSE WIDTH
0.1
123456
VGS, Gate-to-Source Voltage (V)
Fig 5. Typical Transfer Characteristics
4
1000
60μs PULSE WIDTH
Tj = 175°C
100
TOP
BOTTOM
VGS
10V
8.0V
6.0V
4.5V
3.5V
3.0V
2.8V
2.5V
10
2.5V
1
0.1
1 10 100 1000
VDS, Drain-to-Source Voltage (V)
Fig 2. Typical Output Characteristics
16
Vgs = 10V
14
12
10 TJ = 125°C
8
6
4 TJ = 25°C
2
0
0 20 40 60 80 100 120 140 160 180 200
ID, Drain Current (A)
Fig 4. Typical On-Resistance vs. Drain Current
2.0
ID = 35A
VGS = 10V
1.5
1.0
0.5
-60 -40 -20 0 20 40 60 80 100120140160180
TJ , Junction Temperature (°C)
Fig 6. Normalized On-Resistance vs. Temperature
www.irf.com

No Preview Available !

AUIRL7732S2TR/TR1
3.0 1000
2.5
2.0
1.5
ID = 50μA
ID = 250μA
ID = 1.0mA
1.0 ID = 1.0A
100
TJ = -40°C
TJ = 25°C
TJ = 175°C
10
0.5
-75 -50 -25 0 25 50 75 100 125 150 175
TJ , Temperature ( °C )
Fig 7. Typical Threshold Voltage vs. Junction Temperature
VGS = 0V
1.0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
VSD, Source-to-Drain Voltage (V)
Fig 8. Typical Source-Drain Diode Forward Voltage
100
TJ = 25°C
80
60
TJ = 175°C
40
20 VDS = 5.0V
380μs PULSE WIDTH
0
0 20 40 60 80 100
ID,Drain-to-Source Current (A)
Fig 9. Typical Forward Transconductance vs. Drain Current
100000
10000
VGS = 0V, f = 1 MHZ
Ciss = C gs + Cgd, C ds SHORTED
Crss = Cgd
Coss = Cds + Cgd
1000
Ciss
Coss
Crss
100
1
10
VDS, Drain-to-Source Voltage (V)
100
Fig 10. Typical Capacitance vs. Drain-to-Source Voltage
14.0
ID= 35A
12.0
VDS= 32V
10.0
VDS= 20V
VDS= 8.0V
8.0
6.0
4.0
60
50
40
30
20
2.0 10
0.0
0
10 20 30 40 50
QG, Total Gate Charge (nC)
60
0
25
50 75 100 125 150
TC , Case Temperature (°C)
175
Fig.11 Typical Gate Charge vs.Gate-to-Source Voltage
www.irf.com
Fig 12. Maximum Drain Current vs. Case Temperature
5