IRGP4069-EPbF.pdf 데이터시트 (총 10 페이지) - 파일 다운로드 IRGP4069-EPbF 데이타시트 다운로드

No Preview Available !

INSULATED GATE BIPOLAR TRANSISTOR
Features
• Low VCE (ON) Trench IGBT Technology
• Low Switching Losses
• Maximum Junction Temperature 175 °C
• 5 μS short circuit SOA
• Square RBSOA
• 100% of The Parts Tested for ILM
• Positive VCE (ON) Temperature Coefficient
• Tight Parameter Distribution
• Lead Free Package
PD - 97426
IRGP4069PbF
IRGP4069-EPbF
C
G
E
n-channel
VCES = 600V
IC(Nominal) = 35A
tSC 5μs, TJ(max) = 175°C
VCE(on) typ. = 1.6V
Benefits
• High Efficiency in a Wide Range of Applications
• Suitable for a Wide Range of Switching Frequencies due to
Low VCE (ON) and Low Switching Losses
• Rugged Transient Performance for Increased Reliability
• Excellent Current Sharing in Parallel Operation
CC
GC E
TO-247AC
IRGP4069PbF
GC E
TO-247AD
IRGP4069-EPbF
G
Gate
C
Collector
E
Emitter
Absolute Maximum Ratings
Parameter
VCES
IC @ TC = 25°C
IC @ TC = 100°C
INOMINAL
ICM
ILM
VGE
Collector-to-Emitter Voltage
Continuous Collector Current
Continuous Collector Current
Nominal Current
Pulse Collector Current, VGE = 15V
cClamped Inductive Load Current, VGE = 20V
Continuous Gate-to-Emitter Voltage
Transient Gate-to-Emitter Voltage
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 sec.
Mounting Torque, 6-32 or M3 Screw
Thermal Resistance
RθJC
RθCS
RθJA
Parameter
fThermal Resistance Junction-to-Case
Thermal Resistance, Case-to-Sink (flat, greased surface)
Thermal Resistance, Junction-to-Ambient (typical socket mount)
Max.
600
76
50
35
105
140
±20
±30
268
134
-55 to +175
300 (0.063 in. (1.6mm) from case)
10 lbf·in (1.1 N·m)
Min.
–––
–––
–––
Typ.
–––
0.24
–––
Max.
0.56
–––
40
Units
V
A
V
W
°C
Units
°C/W
1 www.irf.com
10/02/09

No Preview Available !

IRGP4069PbF/IRGP4069-EPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max.
V(BR)CES
Collector-to-Emitter Breakdown Voltage
600 —
ΔV(BR)CES/ΔTJ Temperature Coeff. of Breakdown Voltage
— 1.3 —
— 1.6 1.85
VCE(on)
Collector-to-Emitter Saturation Voltage
— 1.9 —
— 2.0 —
VGE(th)
Gate Threshold Voltage
4.0 — 6.5
ΔVGE(th)/ΔTJ Threshold Voltage temp. coefficient
— -18 —
gfe Forward Transconductance
— 25 —
ICES Collector-to-Emitter Leakage Current
— 1.0 20
— 770 —
IGES Gate-to-Emitter Leakage Current
— — ±100
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max.
Qg Total Gate Charge (turn-on)
— 69 104
Qge Gate-to-Emitter Charge (turn-on)
— 18 27
Qgc Gate-to-Collector Charge (turn-on)
— 29 44
Eon Turn-On Switching Loss
— 390 508
Eoff Turn-Off Switching Loss
— 632 753
Etotal
Total Switching Loss
— 1022 1261
td(on)
Turn-On delay time
— 46 56
tr Rise time
— 33 42
td(off)
Turn-Off delay time
— 105 117
tf Fall time
— 44 54
Eon Turn-On Switching Loss
— 1013 —
Eoff Turn-Off Switching Loss
— 929 —
Etotal
Total Switching Loss
— 1942 —
td(on)
Turn-On delay time
— 43 —
tr Rise time
— 35 —
td(off)
Turn-Off delay time
— 127 —
tf Fall time
— 61 —
Cies Input Capacitance
— 2113 —
Coes Output Capacitance
— 197 —
Cres Reverse Transfer Capacitance
— 65 —
RBSOA
Reverse Bias Safe Operating Area
FULL SQUARE
SCSOA
Short Circuit Safe Operating Area
5 ——
Units
Conditions
eV VGE = 0V, IC = 100μA
mV/°C VGE = 0V, IC = 1mA (25°C-175°C)
dIC = 35A, VGE = 15V, TJ = 25°C
dV IC = 35A, VGE = 15V, TJ = 150°C
dIC = 35A, VGE = 15V, TJ = 175°C
V VCE = VGE, IC = 1.0mA
mV/°C VCE = VGE, IC = 1.0mA (25°C - 175°C)
S VCE = 50V, IC = 35A, PW = 60μs
μA VGE = 0V, VCE = 600V
VGE = 0V, VCE = 600V, TJ = 175°C
nA VGE = ±20V
Units
Conditions
IC = 35A
nC VGE = 15V
VCC = 400V
IC = 35A, VCC = 400V, VGE = 15V
μJ RG = 10Ω, L = 200μH, LS = 150nH, TJ = 25°C
Energy losses include tail & diode reverse recovery
IC = 35A, VCC = 400V, VGE = 15V
ns RG = 10Ω, L = 200μH, LS = 150nH, TJ = 25°C
IC = 35A, VCC = 400V, VGE=15V
μJ RG=10Ω, L=200μH, LS=150nH, TJ = 175°C
Energy losses include tail & diode reverse recovery
IC = 35A, VCC = 400V, VGE = 15V
ns RG = 10Ω, L = 200μH, LS = 150nH
TJ = 175°C
pF VGE = 0V
VCC = 30V
f = 1.0Mhz
TJ = 175°C, IC = 140A
VCC = 480V, Vp =600V
Rg = 10Ω, VGE = +20V to 0V
μs VCC = 400V, Vp =600V
Rg = 10Ω, VGE = +15V to 0V
Notes:
 VCC = 80% (VCES), VGE = 20V, L = 19μH, RG = 10Ω.
‚ Pulse width limited by max. junction temperature.
ƒ Refer to AN-1086 for guidelines for measuring V(BR)CES safely.
„ Rθ is measured at TJ of approximately 90°C.
2
www.irf.com

No Preview Available !

80
70
60
50
40
30
20
10
0
25 50 75 100 125 150 175
TC (°C)
Fig. 1 - Maximum DC Collector Current vs.
Case Temperature
1000
IRGP4069PbF/IRGP4069-EPbF
300
250
200
150
100
50
0
25 50 75 100 125 150 175
TC (°C)
Fig. 2 - Power Dissipation vs. Case
Temperature
1000
100
100μsec
10μsec
10 1msec
DC
1
Tc = 25°C
Tj = 175°C
Single Pulse
0.1
1 10
100
VCE (V)
Fig. 3 - Forward SOA
TC = 25°C, TJ 175°C; VGE =15V
1000
140
VGE = 18V
120 VGE = 15V
100
VGE = 12V
VGE = 10V
80 VGE = 8.0V
60
40
20
0
0 2 4 6 8 10
VCE (V)
Fig. 5 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 60μs
www.irf.com
100
10
1
10
100
VCE (V)
Fig. 4 - Reverse Bias SOA
TJ = 175°C; VGE =20V
1000
140
VGE = 18V
120 VGE = 15V
VGE = 12V
100 VGE = 10V
VGE = 8.0V
80
60
40
20
0
0 2 4 6 8 10
VCE (V)
Fig. 6 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 60μs
3

No Preview Available !

IRGP4069PbF/IRGP4069-EPbF
140
VGE = 18V
120 VGE = 15V
VGE = 12V
100 VGE = 10V
80 VGE = 8.0V
60
40
20
0
0 2 4 6 8 10
VCE (V)
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 175°C; tp = 60μs
20
18
16
14
12
10
ICE = 18A
ICE = 35A
8 ICE = 70A
6
4
2
0
5 10 15
VGE (V)
Fig. 9 - Typical VCE vs. VGE
TJ = 25°C
20
140
120
TJ = 25°C
100
80
TJ = 175°C
60
40
20
0
4 5 6 7 8 9 10 11 12 13 14
VGE, Gate-to-Emitter Voltage (V)
Fig. 11 - Typ. Transfer Characteristics
VCE = 50V; tp = 60μs
20
18
16
14
12 ICE = 18A
10 ICE = 35A
8 ICE = 70A
6
4
2
0
5 10 15
VGE (V)
Fig. 8 - Typical VCE vs. VGE
TJ = -40°C
20
18
16
14
12
10
ICE = 18A
ICE = 35A
8 ICE = 70A
6
4
2
0
5 10 15
VGE (V)
Fig. 10 - Typical VCE vs. VGE
TJ = 175°C
4000
20
20
3500
3000
2500
2000
EON
1500
1000
EOFF
500
0
0 10 20 30 40 50 60 70
IC (A)
Fig. 12 - Typ. Energy Loss vs. IC
TJ = 175°C; L = 200μH; VCE = 400V, RG = 10Ω; VGE = 15V
4 www.irf.com

No Preview Available !

IRGP4069PbF/IRGP4069-EPbF
1000
3000
tdOFF
100
tF
2500
2000
1500
EON
EOFF
tdON
10
0
tR
10 20 30 40 50 60 70
IC (A)
Fig. 13 - Typ. Switching Time vs. IC
TJ = 175°C; L = 200μH; VCE = 400V, RG = 10Ω; VGE = 15V
1000
1000
500
0
25 50 75 100
Rg (Ω)
Fig. 14 - Typ. Energy Loss vs. RG
TJ = 175°C; L = 210μH; VCE = 400V, ICE = 35A; VGE = 15V
20 300
tdOFF
100
tF
tdON
tR
Isc
15
Tsc
225
10 150
5 75
10
0
10 20 30 40 50
RG (Ω)
Fig. 15 - Typ. Switching Time vs. RG
TJ = 175°C; L = 210μH; VCE = 400V, ICE = 35A; VGE = 15V
10000
0
8 10 12 14 16
VGE (V)
Fig. 16 - VGE vs. Short Circuit Time
VCC = 400V; TC = 25°C
0
18
1000
Cies
www.irf.com
100 Coes
Cres
10
0
100 200 300 400
VCE (V)
Fig. 17 - Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
500
5