IRG4PC40FPBF.pdf 데이터시트 (총 9 페이지) - 파일 다운로드 IRG4PC40FPBF 데이타시트 다운로드

No Preview Available !

PD -95430
INSULATED GATE BIPOLAR TRANSISTOR
IRG4PC40FPbF
Fast Speed IGBT
Features
• Fast: Optimized for medium operating
frequencies ( 1-5 kHz in hard switching, >20
kHz in resonant mode).
• Generation 4 IGBT design provides tighter
parameter distribution and higher efficiency than
Generation 3
• Industry standard TO-247AC package
• Lead-Free
C
G
E
n-channel
Benefits
• Generation 4 IGBT's offer highest efficiency available
• IGBT's optimized for specified application conditions
• Designed to be a "drop-in" replacement for equivalent
industry-standard Generation 3 IR IGBT's
VCES = 600V
VCE(on) typ. = 1.50V
@VGE = 15V, IC = 27A
Absolute Maximum Ratings
VCES
IC @ TC = 25°C
IC @ TC = 100°C
ICM
ILM
VGE
EARV
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Parameter
Collector-to-Emitter Breakdown Voltage
Continuous Collector Current
Continuous Collector Current
Pulsed Collector Current 
Clamped Inductive Load Current ‚
Gate-to-Emitter Voltage
Reverse Voltage Avalanche Energy ƒ
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Mounting torque, 6-32 or M3 screw.
Thermal Resistance
RθJC
RθCS
RθJA
Wt
Parameter
Junction-to-Case
Case-to-Sink, Flat, Greased Surface
Junction-to-Ambient, typical socket mount
Weight
www.irf.com
TO-247AC
Max.
600
49
27
200
200
± 20
15
160
65
-55 to + 150
300 (0.063 in. (1.6mm from case )
10 lbf•in (1.1N•m)
Units
V
A
V
mJ
W
°C
Typ.
–––
0.24
–––
6 (0.21)
Max.
0.77
–––
40
–––
Units
°C/W
g (oz)
1
06/17/04

No Preview Available !

IRG4PC40FPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
Conditions
V(BR)CES
Collector-to-Emitter Breakdown Voltage 600 — —
V VGE = 0V, IC = 250µA
V(BR)ECS
Emitter-to-Collector Breakdown Voltage „ 18 — —
V(BR)CES/TJ Temperature Coeff. of Breakdown Voltage — 0.70 —
— 1.50 1.7
V
V/°C
VGE = 0V, IC = 1.0A
VGE = 0V, IC = 1.0mA
IC = 27A
VGE = 15V
VCE(ON)
VGE(th)
Collector-to-Emitter Saturation Voltage
Gate Threshold Voltage
— 1.85 — V IC = 49A
See Fig.2, 5
— 1.56 —
IC = 27A , TJ = 150°C
3.0 — 6.0
VCE = VGE, IC = 250µA
VGE(th)/TJ Temperature Coeff. of Threshold Voltage — -12 — mV/°C VCE = VGE, IC = 250µA
gfe Forward Transconductance …
9.2 12 — S VCE = 100V, IC = 27A
ICES
Zero Gate Voltage Collector Current
— — 250 µA VGE = 0V, VCE = 600V
— — 2.0
VGE = 0V, VCE = 10V, TJ = 25°C
— — 1000
VGE = 0V, VCE = 600V, TJ = 150°C
IGES Gate-to-Emitter Leakage Current
— — ±100 n A VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg
Qge
Qgc
td(on)
tr
td(off)
tf
Eon
Eoff
Ets
td(on)
tr
td(off)
tf
Ets
LE
Cies
Coes
Cres
Notes:
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Switching Loss
Internal Emitter Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Min. Typ. Max. Units
Conditions
— 100 150
IC = 27A
— 15 23
— 35 53
nC VCC = 400V
VGE = 15V
See Fig. 8
— 26 —
— 18 — ns TJ = 25°C
— 240 360
IC = 27A, VCC = 480V
— 170 250
VGE = 15V, RG = 10
— 0.37 —
Energy losses include "tail"
— 1.81 — mJ See Fig. 10, 11, 13, 14
— 2.18 2.8
— 25 —
TJ = 150°C,
— 21 —
— 380 —
ns IC = 27A, VCC = 480V
VGE = 15V, RG = 10
— 310 —
Energy losses include "tail"
— 3.9 — mJ See Fig. 13, 14
— 13 — nH Measured 5mm from package
— 2200 —
VGE = 0V
— 140 —
— 29 —
pF VCC = 30V
ƒ = 1.0MHz
See Fig. 7
 Repetitive rating; VGE = 20V, pulse width limited by
max. junction temperature. ( See fig. 13b )
‚ VCC = 80%(VCES), VGE = 20V, L = 10µH, RG = 10,
(See fig. 13a)
ƒ Repetitive rating; pulse width limited by maximum
junction temperature.
„ Pulse width 80µs; duty factor 0.1%.
… Pulse width 5.0µs, single shot.
2 www.irf.com

No Preview Available !

IRG4PC40FPbF
80
60
Square wave:
40 60% of rated
voltage
For both:
Duty cycle: 50%
TJ = 125°C
Tsink = 90°C
Gate drive as specified
Power Dissipation = 35W
Triangular wave:
Clamp voltage:
80% of rated
20
Ideal diodes
0
0.1 1 10
f, Frequency (kHz)
Fig. 1 - Typical Load Current vs. Frequency
(For square wave, I=IRMS of fundamental; for triangular wave, I=IPK)
A
100
1000
1000
TJ = 25°C
100
TJ = 150°C
10
100
TJ = 150°C
TJ = 25°C
10
VGE = 15V
1 20µs PULSE WIDTH A
1 10
VCE , Collector-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
V CC = 50V
1 5µs PULSE WIDTH A
5 6 7 8 9 10 11 12
VGE, Gate-to-Emitter Voltage (V)
Fig. 3 - Typical Transfer Characteristics
www.irf.com
3

No Preview Available !

IRG4PC40FPbF
50
VGE = 15V
2.5
VGE = 15V
80µs PULSE WIDTH
IC = 54A
40
2.0
30
20
10
0
25 50 75 100 125 150
TC , Case Temperature (°C)
Fig. 4 - Maximum Collector Current vs. Case
Temperature
IC = 27A
1.5
I C = 14A
1.0 A
-60 -40 -20 0 20 40 60 80 100 120 140 160
TJ , Junction Temperature (°C)
Fig. 5 - Typical Collector-to-Emitter Voltage
vs. Junction Temperature
1
D = 0.50
0.20
0.1
0.10
0.05
0.02
0.01
0.01
0.00001
PDM
SINGLE PULSE
(THERMAL RESPONSE)
t1
t2
Notes:
1. Duty factor D = t1 / t 2
2. Peak TJ = PDM x Z thJC + TC
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
1
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
10
4 www.irf.com

No Preview Available !

IRG4PC40FPbF
4000
3000
2000
VGE = 0V
f = 1 MHz
Cies = Cge + Cgc + Cce
Cres = Cce
Coes = Cce + Cgc
SHORTED
Cies
1000 Coes
Cres
0A
1 10 100
VCE, Collector-to-Emitter Voltage (V)
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
20
VCE = 400V
IC = 27A
16
12
8
4
0A
0 20 40 60 80 100 120
Qg, Total Gate Charge (nC)
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
2.60
VCC = 480V
VGE = 15V
T J = 25°C
2.50 I C = 27A
2.40
2.30
2.20
2.10
0
10 20 30 40 50
R G , Gate Resistance (Ω)
A
60
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
www.irf.com
10
IC = 54A
IC = 27A
1 IC = 14A
R G = 10
V GE = 15V
0.1 V CC = 480V A
-60 -40 -20 0 20 40 60 80 100 120 140 160
TJ , Junction Temperature (°C)
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
5