ADA-4543.pdf 데이터시트 (총 10 페이지) - 파일 다운로드 ADA-4543 데이타시트 다운로드

No Preview Available !

ADA-4543
Silicon Bipolar Darlington Amplifier
Data Sheet
Description
Avago Technologies’ ADA-4543 is an economical, easy-to-
use, general purpose silicon bipolar RFIC gain block am-
plifiers housed in a 4-lead SC-70 (SOT-343) surface mount
plastic package which requires only half the board space
of a SOT-143 package.
The Darlington feedback structure provides inherent
broad bandwidth performance, resulting in useful oper-
ating frequency up to 2.5 GHz. This is an ideal device for
small-signal gain cascades or IF amplification.
ADA-4543 is fabricated using Avago’s HP25 silicon bi-
polar process, which employs a double-diffused single
polysilicon process with self-aligned submicron emitter
geometry. The process is capable of simultaneous high fT
and high NPN breakdown (25 GHz fT at 6V BVCEO). The
process utilizes industry standard device oxide isolation
technologies and submicron aluminum multilayer inter-
connect to achieve superior performance, high uniformi-
ty, and proven reliability.
Surface Mount Package
SOT-343
Features
• Small Signal gain amplifier
• Operating frequency DC – 2.5 GHz
• Unconditionally stable
• 50 Ohms input & output
• Flat, Broadband Frequency Response up to 1 GHz
• Operating Current: 10 to 30 mA
• Industry standard SOT-343 package
• Lead-free option available
Specifications
900 MHz, 3.4V, 15 mA (typ.)
• 15.1 dB associated gain
• 1.9 dBm P1dB
• 15 dBm OIP3
• 3.7 dB noise figure
• VSWR < 2 throughput operating frequency
• Single supply, typical Id = 15 mA
Applications
• Cellular/PCS/WLL base stations
• Wireless data/WLAN
• Fiber-optic systems
• ISM
Pin Connections and Package Marking
RFout
& Vd
GND
GND RFin
Note:
Top View. Package marking provides orientation and identification.
“1T” = Device Code
“x” = Date code character
identifies month of manufacture.
Attention:
Observe precautions for handling
electrostatic sensitive devices.
ESD Machine Model (Class A)
ESD Human Body Model (Class 1B)
Refer to Avago Application Note A004R:
Electrostatic Discharge Damage and Control.
Typical Biasing Configuration
Rc =
Vcc -
Id
Vd
Rc
VCC = 5 V
C bypass
RF
input
C block
1Tx
RFC
Vd = 3.4 V
C block
RF
output

No Preview Available !

ADA-4543 Absolute Maximum Ratings[1]
Symbol
Id
Pdiss
Pin max.
Tj
TSTG
θjc
Parameter
Device Current
Total Power Dissipation [2]
RF Input Power
Channel Temperature
Storage Temperature
Thermal Resistance [3]
Units
mA
mW
dBm
°C
°C
°C/W
Absolute
Maximum
40
145
13
150
-65 to 150
152
Notes:
1. Operation of this device above any one of
these parameters may cause permanent
damage.
2. Ground lead temperature is 25°C. Derate
6.6 mW/°C for TL >128°C.
3. Junction-to-case thermal resistance
measured using 150°C Liquid Crystal
Measurement method.
ADA-4543 Electrical Specifications
TA = 25°C, Zo=50Ω, Pin = -25 dBm, Id = 15 mA (unless specified otherwise)
Symbol
Parameter and Test Condition:
Id = 15 mA, Zo = 50Ω
Frequency
Units
Vd Device Voltage Id= 15 mA
Gp Power Gain (|S21|2
100 MHz
900 MHz[1,2]
V
dB
ΔGp Gain Flatness
100 to 900 MHz
0.1 to 2 GHz
dB
F3dB
VSWRin
VSWRout
NF
3 dB Bandwidth
Input Voltage Standing Wave Ratio
Output Voltage Standing Wave Ratio
50Ω Noise Figure
0.1 to 6 GHz
0.1 to 6 GHz
100 MHz
900 MHz[1,2]
GHz
dB
P1dB
Output Power at 1dB Gain Compression
100 MHz
dBm
900 MHz[1,2]
OIP3 Output 3rd Order Intercept Point
100 MHz[3]
900 MHz[1,2,3]
dBm
DV/dT
Device Voltage Temperature Coefficient
mV/°C
Notes:
1. Typical value determined from a sample size of 500 parts from 3 wafers.
2. Measurement obtained using production test board described in the block diagram below.
3. I) 900 MHz OIP3 test condition: F1 = 900 MHz, F2 = 905 MHz and Pin = -25 dBm per tone.
II) 100 MHz OIP3 test condition: F1 = 100 MHz, F2 = 105 MHz and Pin = -25 dBm per tone.
Min.
3.1
13.5
Typ.
3.4
15.7
15.1
0.4
1.5
3.6
1.7:1
1.3:1
3.6
3.7
2.5
1.9
14.6
15.0
-5.6
Max. Std. Dev.
3.8
16.5
0.16
0.18
Input
50 Ohm
Transmission
(0.5 dB loss)
50 Ohm
Output
Transmission
DUT including Bias
(0.5 dB loss)
Block diagram of 900 MHz production test board used for Vd, Gain, P1dB, OIP3, and NF measurements.
Circuit losses have been de-embedded from actual measurements.
2

No Preview Available !

Product Consistency Distribution Charts at 900 MHz, Id = 15 mA
240 400
200
300
160
120 200
80
100
40
0
13 14 15 16 17
GAIN (dB)
Figure 1. Gain distribution @ 15 mA.
LSL = 13.5, Nominal = 15.1, USL = 16.5
0
3 3.2 3.4 3.6 3.8 4
Vd (V)
Figure 2. Vd distribution @ 15 mA.
LSL = 3.1, Nominal = 3.4, USL = 3.8
Notes:
1. Statistics distribution determined from a sample size of 500 parts taken from 3 different wafers.
2. Future wafers allocated to this product may have typical values anywhere between the minimum and maximum specification limits.
ADA-4543 Typical Performance Curves (at 25°C, unless specified otherwise)
20 10
15 5
10 0
5 -5
0
01 23 456
FREQUENCY (GHz)
Figure 3. Gain vs. Frequency at Id = 15 mA.
-10
0
1 23 4
FREQUENCY (GHz)
5
6
Figure 4. P1dB vs. Frequency at Id=15 mA.
20
15
10
5
0
01 23 456
FREQUENCY (GHz)
Figure 5. OIP3 vs. Frequency at Id=15 mA.
6
5
4
3
2
01 23 456
FREQUENCY (GHz)
Figure 6. NF vs Frequency at Id=15 mA.
35
30
25
-40°C
20 25°C
85°C
15
10
5
0
01
23
4
Vd (V)
Figure 7. Id vs. Vd and Temperature.
5
18
17
16
15
-40°C
14 25°C
85°C
13
12
0 10 20 30 40
Id (mA)
Figure 8. Gain vs. Id and Temperature at 900 MHz.
3

No Preview Available !

ADA-4543 Typical Performance Curves (at 25°C, unless specified otherwise), continued
15
10
5
0
-40°C
-5 25°C
85°C
-10
-15
0 10 20 30
Id (mA)
Figure 9. P1dB vs. Id and Temperature
at 900 MHz.
40
30
25
20
15
-40°C
10 25°C
85°C
5
0
0 10 20 30 40
Id (mA)
Figure 10. OIP3 vs. Id and Temperature
at 900 MHz.
6
5
4
3
-40°C
2 25°C
85°C
1
0
0 10 20 30
Id (mA)
Figure 11. NF vs. Id and Temperature
at 900 MHz.
40
18
0.1
0.5
0.9
16 1.5
2.0
2.5
3
14
4
5
12
6
10
8
0 10 20 30 40
Id (mA)
Figure 12. Gain vs. Id and Frequency (GHz).
20
15
0.1
0.5
0.9
1.5
10
2.0
2.5
3
4
55
6
0
-5
-10
0 10 20 30 40
Id (mA)
Figure 13. P1dB vs. Id and Frequency (GHz).
30
0.1
0.5
25
0.9
1.5
2.0
2.5
20 3
4
15 5
6
10
5
0 10 20 30 40
Id (mA)
Figure 14. OIP3 vs. Id and Frequency (GHz).
5
6
4.5 5
4
3
2.5
4
2.0
1.5
0.9
0.5
0.1
3.5
3
0 10 20 30 40
Id (mA)
Figure 15. NF vs. Id and Frequency (GHz).
0
-5
-10
-15
-20
Id=12 mA
-25 Id=15 mA
Id=20 mA
-30 Id=30 mA
-35
0
2 4 6 8 10
FREQUENCY (GHz)
Figure 16. Input Return Loss vs. Id
and Frequency (GHz).
12
-5
-10
-15
-20
-25
Id=12 mA
-30 Id=15 mA
Id=20 mA
-35 Id=30 mA
-40
0
246 8
FREQUENCY (GHz)
10
Figure 17. Output Return Loss vs. Id
and Frequency (GHz).
12
4

No Preview Available !

ADA-4543 Typical Scattering Parameters, TA = 25°C, Id = 12 mA
Freq.
GHz
S11
Mag. Ang.
S21
dB Mag. Ang.
S12
Mag. Ang.
S22
Mag. Ang.
K
0.1
0.071
4.9
0.5
0.112
24.8
0.9
0.184
24.2
1.0
0.198
21.6
1.5
0.257
5.9
1.9
0.282
-4.5
2.0 0.29 -7.8
2.5
0.307
-19.4
3.0 0.31 -30.7
3.5
0.303
-43.3
4.0
0.287
-58
4.5
0.273
-74.8
5.0
0.258
-94.3
5.5
0.253
-116.3
6.0
0.259
-136.7
6.5
0.254
-156.4
7.0 0.25 -177.8
7.5 0.25 157
8.0
0.266
131
8.5
0.294
106.9
9.0
0.346
87.1
9.5
0.399
70.1
10.0
0.454
57.4
14.38
14.24
13.98
13.90
13.51
13.15
13.09
12.72
12.40
12.07
11.74
11.45
11.05
10.67
10.24
9.83
9.43
8.97
8.45
7.79
7.17
6.39
5.73
5.234
5.15
4.998
4.956
4.735
4.547
4.513
4.326
4.168
4.013
3.865
3.736
3.568
3.416
3.251
3.101
2.961
2.81
2.645
2.453
2.284
2.088
1.935
176.2
162.1
148.3
144.9
129.3
117.1
114.2
99.8
85.9
72.2
58.5
45
31.4
18.2
5
-7.7
-20.5
-33.5
-46.4
-59.1
-71
-83.5
-94.8
0.125
0.123
0.12
0.119
0.116
0.113
0.113
0.111
0.109
0.109
0.109
0.111
0.113
0.118
0.125
0.135
0.148
0.161
0.172
0.181
0.192
0.204
0.213
-0.9
-4.6
-7.6
-8.3
-10.9
-12.6
-13.1
-14.8
-16.1
-17.2
-18
-18.5
-19.2
-19.8
-21
-22.8
-26.1
-31.1
-37.1
-43.2
-49
-55.7
-62.9
0.146
0.15
0.183
0.191
0.207
0.213
0.212
0.203
0.185
0.162
0.139
0.12
0.11
0.114
0.122
0.121
0.116
0.116
0.134
0.171
0.223
0.281
0.339
-3.2
-3.8
-6
-7.7
-18.7
-27.2
-29.1
-38
-46.8
-57
-69.3
-87
-106.9
-126.3
-144.9
-163.1
173.8
143.7
111.8
87.5
71.6
60.3
50.8
1.1
1.1
1.1
1.1
1.1
1.2
1.2
1.2
1.2
1.3
1.3
1.3
1.4
1.4
1.3
1.3
1.3
1.2
1.2
1.2
1.2
1.1
1.1
Notes:
1. S-parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the end of the input lead. The
output reference plane is at the end of the output lead.
5