AUIRLB3036.pdf 데이터시트 (총 11 페이지) - 파일 다운로드 AUIRLB3036 데이타시트 다운로드

No Preview Available !

AUTOMOTIVE GRADE
AUIRLB3036
Features
l Advanced Process Technology
l Ultra Low On-Resistance
l Logic Level Gate Drive
l Dynamic dv/dt Rating
l 175°C Operating Temperature
l Fast Switching
l Repetitive Avalanche Allowed up to Tjmax
l Lead-Free, RoHS Compliant
l Automotive Qualified *
HEXFET® Power MOSFET
D VDSS
60V
RDS(on) typ.
1.9mΩ
cmax. 2.4mΩ
G
ID (Silicon Limited)
270A
S ID (Package Limited)
195A
D
Description
Specifically designed for Automotive applications, this HEXFET® Power
MOSFET utilizes the latest processing techniques to achieve extremely
low on-resistance per silicon area. Additional features of this design
are a 175°C junction operating temperature, fast switching speed and
improved repetitive avalanche rating . These features combine to make
this design an extremely efficient and reliable device for use in Automotive
applications and a wide variety of other applications.
G
Gate
DS
G
TO-220AB
AUIRLB3036
D
Drain
S
Source
Base Part Number
AUIRLB3036
Package Type
TO-220
Standard Pack
Form
Quantity
Tube
50
Orderable Part Number
AUIRLB3036
Absolute Maximum Ratings
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only; and
functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-
maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured
under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless otherwise specified.
Symbol
ID @ TC = 25°C
ID @ TC = 100°C
ID @ TC = 25°C
IDM
PD @TC = 25°C
Parameter
Continuous Drain Current, VGS @ 10V (Silicon Limited)
Continuous Drain Current, VGS @ 10V (Silicon Limited)
Continuous Drain Current, VGS @ 10V (Package Limited)
dPulsed Drain Current
Maximum Power Dissipation
Max.
c270
190
195
1100
380
Units
A
W
Linear Derating Factor
2.5 W/°C
VGS
EAS
IAR
EAR
dv/dt
Gate-to-Source Voltage
eSingle Pulse Avalanche Energy (Thermally Limited)
dAvalanche Current
dRepetitive Avalanche Energy
fPeak Diode Recovery
±16
290
See Fig. 14, 15, 22a, 22b
8.0
V
mJ
A
mJ
V/ns
TJ
TSTG
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
(1.6mm from case)
Mounting torque, 6-32 or M3 screw
-55 to + 175
300
x x10lbf in (1.1N m)
°C
Thermal Resistance
Symbol
RθJC
RθCS
RθJA
Parameter
kJunction-to-Case
Case-to-Sink, Flat, Greased Surface
jJunction-to-Ambient (PCB Mount)
Typ.
–––
0.50
–––
Max.
0.40
–––
62
Units
°C/W
HEXFET® is a registered trademark of International Rectifier.
*Qualification standards can be found at http://www.irf.com/
1 www.irf.com © 2014 International Rectifier
Submit Datasheet Feedback
April 08, 2014

No Preview Available !

AUIRLB3036
Static Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Symbol
Parameter
Min. Typ. Max. Units
Conditions
V(BR)DSS
Drain-to-Source Breakdown Voltage
ΔV(BR)DSS/ΔTJ Breakdown Voltage Temp. Coefficient
RDS(on)
Static Drain-to-Source On-Resistance
VGS(th)
gfs
Gate Threshold Voltage
Forward Transconductance
60 ––– ––– V VGS = 0V, ID = 250μA
––– 0.061 ––– V/°C Reference to 25°C, ID = 5mA
g–––
g–––
1.9
2.2
2.4
2.8
mΩ
VGS = 10V, ID = 165A
VGS = 4.5V, ID = 140A
1.0 ––– 2.5 V VDS = VGS, ID = 250μA
340 ––– ––– S VDS = 10V, ID = 165A
RG(int)
IDSS
Internal Gate Resistance
Drain-to-Source Leakage Current
––– 2.0 ––– Ω
–––
–––
–––
–––
20
250
μA
IGSS Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
–––
–––
–––
–––
100
-100
nA
Dynamic Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
VDS = 60V, VGS = 0V
VDS = 60V, VGS = 0V, TJ = 125°C
VGS = 16V
VGS = -16V
Symbol
Parameter
Min. Typ. Max. Units
Conditions
Qg Total Gate Charge
Qgs Gate-to-Source Charge
Qgd Gate-to-Drain ("Miller") Charge
Qsync
Total Gate Charge Sync. (Qg - Qgd)
td(on)
Turn-On Delay Time
tr Rise Time
td(off)
Turn-Off Delay Time
tf Fall Time
Ciss Input Capacitance
Coss Output Capacitance
Crss Reverse Transfer Capacitance
Coss eff. (ER) Effective Output Capacitance (Energy Related)
Coss eff. (TR) Effective Output Capacitance (Time Related)
Diode Characteristics
––– 91 140
––– 31 –––
––– 51 –––
––– 40 –––
––– 66 –––
––– 220 –––
––– 110 –––
––– 110 –––
––– 11210 –––
––– 1020 –––
––– 500 –––
––– 1430 –––
––– 1880 –––
ID = 165A
gnC
VDS = 30V
VGS = 4.5V
ID = 165A, VDS =0V, VGS = 4.5V
VDD = 39V
gns
ID = 165A
RG = 2.1Ω
VGS = 4.5V
VGS = 0V
VDS = 50V
pF ƒ = 1.0MHz
iVGS = 0V, VDS = 0V to 48V
hVGS = 0V, VDS = 0V to 48V
Symbol
Parameter
Min. Typ. Max. Units
Conditions
IS Continuous Source Current
(Body Diode)
ISM Pulsed Source Current
Ãe(Body Diode)
VSD Diode Forward Voltage
trr Reverse Recovery Time
Qrr Reverse Recovery Charge
IRRM Reverse Recovery Current
ton Forward Turn-On Time
™––– ––– 270
––– –––
MOSFET symbol
A
showing the
integral reverse
D
G
g1100
p-n junction diode.
––– ––– 1.3 V TJ = 25°C, IS = 165A, VGS = 0V
S
–––
–––
62
66
–––
–––
ns
TJ = 25°C
TJ = 125°C
–––
–––
310
360
–––
–––
nC
TJ = 25°C
TJ = 125°C
VR = 51V,
gIF = 165A
di/dt = 100A/μs
––– 4.4 ––– A TJ = 25°C
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Notes:
 Calcuted continuous current based on maximum allowable junction
temperature Bond wire current limit is 195A. Note that current
limitation arising from heating of the device leds may occur with
some lead mounting arrangements.
‚ Repetitive rating; pulse width limited by max. junction
temperature.
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.021mH
RG = 25Ω, IAS = 165A, VGS =10V. Part not recommended for use
above this value .
„ ISD 165A, di/dt 430A/μs, VDD V(BR)DSS, TJ 175°C.
… Pulse width 400μs; duty cycle 2%.
† Coss eff. (TR) is a fixed capacitance that gives the same charging time as
Coss while VDS is rising from 0 to 80% VDSS.
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as
Coss while VDS is rising from 0 to 80% VDSS.
ˆ When mounted on 1" square PCB (FR-4 or G-10 Material). For
recommended footprint and soldering techniquea refer to applocation
note # AN- 994 echniques refer to application note #AN-994.
‰ Rθ is measured at TJ approximately 90°C.
2 www.irf.com © 2014 International Rectifier
Submit Datasheet Feedback
April 08, 2014

No Preview Available !

AUIRLB3036
1000
100
10
TOP
BOTTOM
VGS
15V
10V
4.5V
4.0V
3.5V
3.3V
3.0V
2.7V
1000
100
TOP
BOTTOM
VGS
15V
10V
4.5V
4.0V
3.5V
3.3V
3.0V
2.7V
1 2.7V
0.1
0.1
60μs PULSE WIDTH
Tj = 25°C
1 10 100
VDS, Drain-to-Source Voltage (V)
1000
Fig 1. Typical Output Characteristics
1000
100 TJ = 175°C
10
0.1
2.7V
60μs PULSE WIDTH
Tj = 175°C
1 10 100
VDS, Drain-to-Source Voltage (V)
1000
Fig 2. Typical Output Characteristics
2.5
ID = 165A
VGS = 10V
2.0
10
TJ = 25°C
1
VDS = 25V
60μs PULSE WIDTH
0.1
123456
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
100000
10000
VGS = 0V, f = 1 MHZ
Ciss = C gs + Cgd, C ds SHORTED
Crss = Cgd
Coss = Cds + Cgd
Ciss
1000
Coss
Crss
1.5
1.0
0.5
-60 -40 -20 0 20 40 60 80 100120140160180
TJ , Junction Temperature (°C)
Fig 4. Normalized On-Resistance vs. Temperature
5.0
ID= 165A VDS= 48V
VDS= 30V
4.0
3.0
2.0
1.0
100
1
10 100
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
0.0
0
20 40 60 80 100 120
QG, Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
3 www.irf.com © 2014 International Rectifier
Submit Datasheet Feedback
April 08, 2014

No Preview Available !

1000
100 TJ = 175°C
10 TJ = 25°C
1
VGS = 0V
0.1
0.0 0.5 1.0 1.5 2.0
VSD, Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
2.5
300
250 Limited By Package
200
150
100
50
0
25 50 75 100 125 150
Fig 9. MaxTimC u, CmasDerTaeinmpCeurartruerentvCs).
Case Temperature
3.0
175
2.5
2.0
1.5
1.0
0.5
0.0
-10 0 10 20 30 40 50 60 70
VDS, Drain-to-Source Voltage (V)
Fig 11. Typical COSS Stored Energy
4 www.irf.com © 2014 International Rectifier
AUIRLB3036
10000
1000
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100μsec
1msec
100
Limited by
package
10
Tc = 25°C
Tj = 175°C
Single Pulse
1
01
10msec
DC
10
100
VDS, Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
75
Id = 5mA
70
65
60
55
-60 -40 -20 0 20 40 60 80 100120140160180
TJ , Temperature ( °C )
Fig 10. Drain-to-Source Breakdown Voltage
1200
1000
800
ID
TOP 27A
50A
BOTTOM 165A
600
400
200
0
25 50 75 100 125 150 175
Starting TJ , Junction Temperature (°C)
Fig 12. Maximum Avalanche Energy vs. DrainCurrent
Submit Datasheet Feedback
April 08, 2014

No Preview Available !

AUIRLB3036
1
D = 0.50
0.1 0.20
0.01
0.10
0.05
0.02
0.01
0.001
1E-006
SINGLE PULSE
( THERMAL RESPONSE )
τJ τJ
τ1 τ1
R1R1
R2R2
τ2 τ2
R3R3
τ3 τ3
R4R4
τCτ
Ri (°C/W)
0.01115
0.08360
τ4τ4 0.18950
τi (sec)
0.000009
0.000080
0.001295
CiC= iτi/Ri/iRi
0.11519 0.006726
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case
1000
Duty Cycle = Single Pulse
100 0.01
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ΔTj = 150°C and
Tstart =25°C (Single Pulse)
0.05
0.10
10
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ΔΤ j = 25°C and
Tstart = 150°C.
1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
tav (sec)
Fig 14. Typical Avalanche Current vs.Pulsewidth
1.0E-02
1.0E-01
300
TOP
Single Pulse
BOTTOM 1.0% Duty Cycle
250 ID = 165A
200
150
100
50
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of Tjmax. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
4. PD (ave) = Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during avalanche).
6. Iav = Allowable avalanche current.
7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as
25°C in Figure 14, 15).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)
0
25 50 75 100 125 150 175
Starting TJ , Junction Temperature (°C)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
Fig 15. Maximum Avalanche Energy vs. Temperature
5 www.irf.com © 2014 International Rectifier
Submit Datasheet Feedback
April 08, 2014